Forging the Future of Work
Learning from Earnings Calls: Graph-Based Conversational Modeling for Financial Prediction
Information Systems Research
Earnings conference calls are valuable venues for business communication. Empirical research has shown that the content of earnings calls contains predictive signals about future market risks, which has motivated a line of computational studies that utilize earnings transcripts for financial forecasting tasks. However, earnings call transcripts are typically very long, and the predictive signals within them are often sparsely distributed across different sections of the transcript. As a result, existing computational methods often fail to capture the essential information within the transcript that is relevant to market risks. In this work, we design a novel method to model earnings transcripts as a conversational graph where graph nodes represent discussed topics and graph edges indicate the similarity between topics. By doing so, we aim to explicitly model what is discussed (i.e., topical content), how it is discussed (e.g., cross-referencing or newly introduced topics), and in what manner it is discussed (e.g., sentiment and other linguistic features) within the transcript. We then leverage a graph neural network to learn transcript-level representations for financial risk forecasting. Experimental results show that the proposed method significantly reduces risk forecasting errors, demonstrating its capability of modeling earnings call transcripts. Moreover, this predictive power holds even after considering the firm’s fundamentals, and the performance gain over baseline models continues to grow as transcript length increases. The interpretability analysis shows that the proposed method identifies cross-referencing and newly introduced topics as influential for risk prediction. Moreover, the model tends to associate transcripts with a higher number of new topics in the Q&A section, more cross-referencing discussions, and more positive sentiment with lower predicted financial risks. This work contributes methodologically by proposing a novel predictive approach specifically tailored to the domain-specific challenge of transcript-based risk forecasting. We also discuss key design insights and implications.
Yi Yang (HKUST), Yixuan Tang (HKUST), Yangyang Fan (HK PolyU), and Kunpeng Zhang (UMD)
Analytics for Finance and Accounting: Data Structures and Applied AI
Analytics for Finance and Accounting: Data Structures and Applied AI bridges the gap between technical data science education and domain-specific applications in accounting and finance. Designed for students and instructors seeking practical exposure to AI-driven financial analytics, the book prioritizes understanding real-world business data—structured and unstructured—before introducing machine learning techniques. It empowers learners to apply AI tools, such as GPT and pre-trained language models, to analyze corporate disclosures, earnings calls, ESG reports, and other financial documents. Minimizing programming prerequisites, the book integrates video tutorials and applied projects to support hands-on learning. It serves as both a foundational text for graduate-level data analytics courses and a modular supplement for traditional finance and accounting curricula. By combining domain expertise with modern computational tools, this book equips the next generation of financial professionals with the skills to thrive in a data-intensive economy.
Sean Cao, Associate Professor, Robert H. Smith School of Business, University of Maryland, United States of America
From Man vs. Machine to Man + Machine: The Art and AI of Stock Analyses
Journal of Financial Economics, July 2024
An AI analyst trained to digest corporate disclosures, industry trends, and macroeconomic indicators surpasses most analysts in stock return predictions. Nevertheless, humans win “Man vs. Machine” when institutional knowledge is crucial, e.g., involving intangible assets and financial distress. AI wins when information is transparent but voluminous. Humans provide significant incremental value in “Man + Machine”, which also substantially reduces extreme errors. Analysts catch up with machines after “alternative data” become available if their employers build AI capabilities. Documented synergies between humans and machines inform how humans can leverage their advantage for better adaptation to the growing AI prowess.
Sean Cao, Robert H. Smith School of Business, University of Maryland