From Man vs. Machine to Man + Machine: The Art and AI of Stock Analyses
An AI analyst trained to digest corporate disclosures, industry trends, and macroeconomic indicators surpasses most analysts in stock return predictions. Nevertheless, humans win “Man vs. Machine” when institutional knowledge is crucial, e.g., involving intangible assets and financial distress. AI wins when information is transparent but voluminous. Humans provide significant incremental value in “Man + Machine”, which also substantially reduces extreme errors. Analysts catch up with machines after “alternative data” become available if their employers build AI capabilities.
Logistics Service Provider Technology Report
The Logistics Service Provider Technology Report (LSPTR) will be an annual report published by the University of Maryland’s Supply Chain Management Center that aims to provide technology spend visibility for logistics service providers (LSPs) in a variety of areas.
AI-powered Analysts
We explore how brokerage firms’ investments in artificial intelligence (AI) affect their analysts’ information production. We find that analysts employed at brokerage firms with greater AI integration issue more accurate earnings forecasts. Cross-sectional analyses reveal that AI’s benefits are more pronounced for analysts with less firm-specific experience and when the firm’s disclosures are more readable.
Transforming Products into Platforms: Unearthing New Avenues for Business Innovation
- Read more about Transforming Products into Platforms: Unearthing New Avenues for Business Innovation
It is impossible for brands to ignore digital platform opportunities. Network effects are one of the strongest sources of power and defensibility ever invented and underlie some of the most valuable businesses in the world. Managers and entrepreneurs can leverage the power of platforms by adding some platform elements to their existing products or services, by distributing their brands via existing platforms or by developing their own new platforms.
How to Talk When a Machine Is Listening: Corporate Disclosure in the Age of AI
Growing AI readership (proxied for by machine downloads and ownership by AI-equipped investors) motivates firms to prepare filings friendlier to machine processing and to mitigate linguistic tones that are unfavorably perceived by algorithms. Loughran and McDonald (2011) and BERT available since 2018 serve as event studies supporting attribution of the decrease in the measured negative sentiment to increased machine readership. This relationship is stronger among firms with higher benefits to (e.g., external financing needs) or lower cost (e.g., litigation risk) of sentiment management.
Large language models and synthetic health data: progress and prospects
There is growing interest in the application of machine learning models and advanced analytics to various healthcare processes and operations, including the generation of new clinical discoveries, development of high-quality predictions, and optimization of administrative processes. Machine learning models for prediction and classification rely on extensive and robust datasets, particularly for deep learning models common in health, creating an urgent need for large health datasets.