Attribution Strategies and Return on Keyword Investment in Paid Search Advertising

by

Hongshuang (Alice) Li, P. K. Kannan,
Siva Viswanathan and Abhishek Pani*

December 15, 2015

* Honshuang (Alice) Li is Assistant Professor of Marketing, Kelley School of Business, Indiana University; P. K. Kannan is Ralph J. Tyser Professor of Marketing Science and Siva Viswanathan is Associate Professor, both at Robert H. Smith School of Business, University of Maryland, College Park, and Abhishek Pani is Senior Director, Adobe. Please all correspondence to pkannan@rhsmith.umd.edu.
Attribution Strategies and Return on Keyword Investment in Paid Search Advertising

ABSTRACT

Firms use different attribution strategies such as last-click attribution or first-click attribution to assign conversion credits to search keywords that appear in their consumers’ paths to purchase. These attributed credits impact a firm’s future bidding and budget allocations among keywords and, in turn, determine the overall return-on-investment of search campaigns. In this paper, we model the relationship among the advertiser’s bidding decision for keywords, the search engine’s ranking decision for these keywords, and the consumer’s click-through rate and conversion rate on each keyword, and analyze the impact of the attribution strategy on the overall return-on-investment of paid search advertising.

We estimate our simultaneous equations model using a six-month panel data of several hundred keywords from an online jewelry retailer. The data comprises a quasi-experiment as the firm changed attribution strategy from last-click attribution to first-click attribution half-way through the data window. Our results show that returns for keyword investments vary significantly under the different attribution strategies. For the focal firm, first-click attribution leads to lower returns in terms of revenue and the decrease is more pronounced for the more specific keywords. Our policy simulation exercise shows how the firm can increase its overall returns by better attributing the real contribution of keywords. We discuss how an appropriate attribution strategy can help firms to better target customers and lower acquisition costs in the context of paid search advertising.

Keywords: attribution strategies, paid search advertising, ROI, keyword specificity, budget allocation, first-click attribution, last-click attribution, multi-touch attribution
1. Introduction

Search engine marketing is predicted to comprise 44% of the online marketing budgets for many companies by 2019 and the total US spending on paid search engine marketing is forecasted to be more than $45 billion by 2019 with an annual growth rate of 10% (VanBoskirk et al. 2014). Much of this spending is on paid or “sponsored” search results for which the firm pays the search engine. In this paper, we focus on such paid search ads and examine how the attribution strategies used by the firm impact the return on investment (ROI) of a paid search campaign.

Search engines assist potential customers in finding useful information online by using customer specified search keywords, irrespective of where the customers are in their consumer decision journey (Court et al. 2009). Consider, for example, consumers shopping for jewelry online, with the possible paths they may take as they move through their decision journeys or purchase funnels as shown in Figure 1. Customers who are early in their purchase funnel (identified as C1 and C2 in Figure 1) could use more general and less specific search keywords such as “jewelry” to identify more information about products and retailers as they may not have a specific jewelry item in their mind or be aware of any specific online jewelers. We call such keywords “upper funnel keywords” in Figure 1. Other customers, such as C3, may have a specific item and/or online retailer already identified and may use more specific keywords such as “diamond necklace” or “BlueNile engagement ring” (lower funnel keywords in Figure 1).

The search keywords and the sequence in which customers use the specific keywords as they progress in their purchase funnel could differ significantly across the population of potential customers. Similarly, retailers can differ in the mix of keywords they bid for and the amount they bid for each keyword (bid level). For example, in Figure 1, customer C1 uses an upper funnel keyword, comes across Retailer A and visits that website and never comes back (either he purchases there or offline or decides not to buy in that category). Customer C2 uses an upper
funnel keyword and visits Retailer B, preferring them as their ads are ranked higher than the other retailers that bid for the same keyword, but does not buy during that visit. Subsequently, C2 uses other keywords and re-visits Retailer B culminating in a purchase when visiting with a lower funnel keyword. On the other hand, customer C3 uses only lower funnel keywords and visits Retailer C twice before making a purchase at that retailer on the second visit.

Customers C1, C2 and C3 are clearly heterogeneous in the type of keywords they use possibly driven by the stage of the purchase funnel they are in, their level of knowledge of the category, their specific need and so on. On the other hand, Retailers A through D are also heterogeneous in the mix of keyword they bid for and their bid levels (which determine their rank in paid search ads and visibility). Retailer A by bidding only for upper funnel keywords has no chance of attracting C3 who mainly uses lower funnel keyword, while Retailer C, by bidding only for lower funnel keywords, has no chance of attracting a customer such as C1 who starts her search by using upper funnel keywords. Retailer D loses out customer C2 to Retailer B as it has bid lower for the keyword and has a lower ranked ad than Retailer B’s. Thus, the mix of keywords a retailer bids for and their bid levels have important implications for the potential customer segments it could acquire through the keywords. A wrong or unbalanced mix and/or wrong bid levels may cause the retailer to miss out on large segments of potential customers.

We argue that the attribution strategy a firm uses directly impacts the mix of keywords it bids on and their bid levels under budget constraints and, therefore, impacts the efficiency of customer acquisition. Consider, for example, customer C2 in Figure 1 who visits Retailer B multiple times using different keywords. If Retailer B credits C2’s conversion at its website to the last used keyword, it does not give any credit to the upper funnel keyword that C2 used to arrive at the retailer’s website for the first time. Retailer B, therefore, is more likely to bid higher and allocate a higher budget for the lower funnel keywords, while bidding lower for the upper funnel keywords and allocating an insufficient budget to the upper funnel keywords as it considers those keywords to be less effective under the attribution strategy being used. This
lowers the rank of the Retailer B’s ad of upper funnel keywords among all the competitive ads (or its ad may not even show up in the first few pages of search results) when consumers (such as C1 and C2) use these keywords in future. If the upper funnel keywords were effective in reality, this misattribution may lead Retailer B to miss the opportunity to acquire visits from a segment of potential customers. Similarly, if the upper funnel keywords were not very effective and if the retailer misattributes them as having a high impact, then the retailer may bid higher and allocate a higher budget for them at the expense of the more effective lower funnel keywords. In both cases, the retailer ends up investing in an inappropriate mix of keywords and bid levels that lead to inefficient use of investment and lower ROIs.

In this paper, we present the first empirical study that examines the influence of attribution strategies on the realized ROI of paid search investments and provide insights into the impact of attribution strategies on the effectiveness of the upper funnel and lower funnel keywords in the customers’ purchase journeys. We show that the use of single touch attribution strategies such as first-click attribution (assigning all the conversion credit to the first clicked keyword) or last-click attribution (assigning all the conversion credit to the last clicked keyword) is likely to lead to inefficient keyword investments and lower ROIs. The policy simulation based on our model identifies better attribution strategies that can lead to significantly higher revenues. The methodology we propose would allow firms to determine the effectiveness of their current attribution strategy and whether and how they can improve it. To our knowledge, this is the first study that examines the impact of attribution strategies on the ROI of paid search campaigns.

The significance of our study lies in the fact that attribution is an important problem for all paid search advertisers as it drives resource (budget) allocation. When a firm has a finite budget and when the maximum amount the firm can possibly spend on all keywords is greater than the available budget, the attribution strategy becomes relevant and important – as it affects the mix of keywords the firm bids for and, more importantly, it affects the amount invested in each keyword and thereby, the efficiency of customer acquisition. When there is a budget
constraint, the firm does not have enough resources to bid high to get the top position for all keywords of interest and hence, for a large number of keywords the firm ends up bidding low. The attribution strategy in place determines which set of keywords are bid high and which set are bid low and thus impacts the efficiency of customer acquisition. This issue is the same for all firms whether it is a large firm like Amazon or a smaller firm as long as they are bidding for multiple keywords.

Additionally, paid search campaigns are generally automated and run on a daily basis by algorithms that determine the specifics for the campaign. In such a context, misattributions of credit for keywords can lead to a significant drop in ROIs of campaigns that compounds over time as historical results form the basis for future investments in many algorithms. Such inefficiencies are likely to be more significant as the purchase journey becomes longer with multiple uses of search keywords before a conversion occurs, and the potential for misattribution is much higher as compared to a case with one or two touches in the purchase journey. With paid search budgets exceeding $20 million annually in many large organizations, understanding the impact of attribution strategy on ROIs can avoid significant waste in investments. Secondly, determining the real and correct impact of upper funnel and lower funnel keywords in effecting conversions allows a firm to understand its internal website effectiveness and optimize the design of its website and internal search functions to increase conversions. This again is a not a trivial issue as improving conversions at website even by a margin can lead to significant impact on revenues. Our research provides insights into this and a methodology to test the efficacy of the attribution strategy in place and improve on it.
2. Background

Let us first consider the players in the paid search market – the advertiser\(^1\), the search engines, and the customers – and the roles they play (see Figure 2).

[Insert Figure 2 about here]

In order to reach potential customers through paid search advertising, the advertiser needs to pick the right “keywords,” write effective ad copy and text, and choose the relevant landing page. A keyword is usually a phrase that contains multiple words and the advertiser can specify the match type of each keyword to avoid missing any potential customers (Web Appendix A provides the definitions and examples for different match types). After specifying the keyword and the match type, the advertiser decides how much to bid on each keyword and submits the bid for the auction at the search engine. The search engine operates a generalized second-price auction to assign the “positions” (where the ad shows up) for the paid search ads. At most search engines, such as Google, Bing, and Yahoo, the ad position of a keyword is ranked according to the bid as well as the quality score (as a measure of the relevance) of an advertiser with respect to a keyword.

When the advertiser’s bid and quality score is high enough to appear among the paid search results in response to a consumer’s query, it is counted as an “impression”. Upon viewing the search results, the customer may click on the result that is most relevant to his/her needs, and then land on a website through the link embedded in the ad, which is counted as a “click-through” (see Wilber and Zhu 2009). The search engine charges the advertiser according to the number of click-throughs on its ads times the cost-per-click (determined in a generalized second-price auction). When an advertiser’s ad appears in the search results but the customer chooses not to click on the ad, it will hurt the advertiser’s click-through rate and the future quality scores of this keyword. On a daily basis, search engines provide performance reports at the keyword

\(^1\) We use the term advertiser to refer to the online firm implementing the search campaign or the ad agency if it implements the search campaign on the firm’s behalf. In our institutional context, we have the ad agency implementing the campaign as shown in Figure 2.
level to the advertisers. Web Appendix B shows an example of such statistics provided by Google to our focal firm, including the number of impressions, the number of clicks, average cost-per-click (CPC), average position, and quality scores at the keyword level.

Once the customer lands on the advertiser’s website, the advertiser can track the keyword click-throughs and conversions at the website at the cookie ID level and measure the ROI\(^2\) of each keyword against the incurred cost. When the customer clicks on only one keyword used by the advertiser to visit the website and makes a purchase, measuring the ROI of that keyword is straightforward. However, when the consumer clicks on multiple keywords from the advertiser and makes multiple visits to the website before making a single conversion, the advertiser must assign the conversion credit back to multiple keywords using a specific attribution strategy.

2.1 Attribution, Bidding and ROI

In practice, a variety of attribution strategies are used. Assume a customer visits a jewelry retailer's website three times through the advertiser’s paid search ads of keywords "jewelry", "silver necklace", and "silver necklace with ruby" (in that order), and makes a purchase on the last visit. The last-click attribution strategy gives all the conversion credit to the last clicked keyword "silver necklace with ruby". Alternatively, the advertiser can use the first-click attribution and assign the entire conversion credit to the first clicked keyword "jewelry". Others may believe that all of these three keywords assist the customer in completing the purchase, and thus each deserves a portion of the conversion credit (fractional attribution).

Figure 3 illustrates, using two scenarios, how attribution strategies influence the realized keyword ROI and thus affect the advertiser’s bidding decision for the next period. In Figure 3(a), we assume the advertiser bids on 3 keywords: K1, K2, and K3. Assume that at time \(t\), the

\(^2\) We use revenue as the measure of return rather than profits as we do not have information on the cost of goods sold. However, the percentage margins of the items sold at the website are somewhat similar. Additionally, since the revenue provided to us by the firm is disguised, we are focusing on the percentage of revenue increase rather than absolute values.
advertiser bids $1 on each keyword and submits these bids to the search engine and earns commensurate positions for their keywords. Assume that there are two hypothetical customers’ purchase journeys: Customer 1 clicks on K1 with no conversion, K2 with no conversion, and K3 twice (in that sequence), and then makes a purchase of $10 at time t, while Customer 2, as part of her purchase journey, clicks on K1 and K2 in sequence before making a $10 conversion at time t. Using the last-click attribution strategy, the advertiser would assign the conversion credit for Customer 1’s purchase to K3 and Customer 2’s conversion credit to K2. Accordingly, the overall imputed revenue is $0 for K1, $10 for K2, and $10 for K3. Based on these keyword-level ROIs, the advertiser increases the bid on K2 and K3 from $1 to $1.5, as these keywords have performed well, and lowers the bid on K1 to $0.8 due to its unsatisfactory performance at time t. These new bid values are somewhat arbitrary in this example and just illustrate expected increase or decrease in subsequent bid values based on the bidding algorithm, which essentially orders the keywords based on their ROI – expected revenue over expected cost – and bids high on those keywords with higher returns and low on those keywords with lower returns.

[Insert Figure 3 about here]

Figure 3(b) shows the scenario resulting from using a first-click attribution strategy. Assume the advertiser still bids on the same keywords at the search engine and the customers click on the same sequences of keywords and each makes a $10 conversion. That is, everything else is equal, but the advertiser uses the first-click attribution instead of the last-click attribution to impute conversion credit for the keywords. Then the imputed revenue is $20 for K1 and $0 for both K2 and K3. Conditional on these keyword ROIs, the advertiser would submit a higher bid on K1 and lower bids on K2 and K3 in the next period.

The illustration shows how the attribution strategies can influence the keyword ROIs, and the keyword ROIs in turn influence the bid level on each keyword going forward and the mix of keywords bid for. Although the initial bids by the advertiser at time t are the same and so are the
customers’ click-throughs and conversions, different attribution strategies lead to completely
different bidding decisions for the advertiser in time \((t+1)\). If the true optimal attribution for the
focal advertiser in Figure 3 is the first-click strategy, then when the advertiser uses last-click
attribution as in Figure 3(a), it would underestimate the revenue contribution made by K1 and
thus underbid on K1 at time \((t+1)\). As a consequence, the lower bid on K1 leads to a less
advantageous ad position that could be ineffective in targeting certain valuable customer
segments and lose the conversions that K1 could have led to. Over time, this targeting
inefficiency gets compounded as future bids are increasingly dependent on the past data of click-
throughs on the inefficient mix of keywords and bids.

The conventional wisdom of path to purchase is that consumers originate their search
with broad upper funnel keywords and narrow them down to more specific keywords in the
lower purchase funnel (Ghose and Yang 2009; Agarwal et al. 2011). From this perspective, since
all the keywords compete for a fixed budget, the lower conversion credits of broad upper funnel
keywords when using the last-click attribution lead to lower investment on broad keywords in
the next period. This results in lower ad positions and fewer click-throughs and conversions from
broad keywords (Ghose and Yang 2009, Rutz et al. 2012). Consequently, the ROI potential of
the broad keywords is not fully realized. Similarly, the first-click attribution limits the more
specific and narrow keywords in reaching their full potential in generating revenue. To our
knowledge, no research has shed light on the impact of attribution strategies on the ROI of
search campaigns.

2.2. Our Research Focus and Positioning

Focusing on the above question, we empirically analyze the ROI of the paid search
campaigns at the individual keyword level, using a six-month panel data of several hundred
keywords from an online jewelry retailer. The relationship among the advertiser’s bidding
decision, the search engine’s ranking decision, and the consumers’ responses are jointly modeled
in a simultaneous equations system. At the beginning of the data window, the advertiser used the last-click attribution strategy and switched to the first-click attribution halfway through the data window, thereby rendering a quasi-experiment. (We will discuss this in more details in the next section). Given the data, we analyze the keyword ROI of the advertiser’s search campaigns under each of these two extremes of attribution strategies. Based on these analyses, we develop, in the context of the application, a new attribution strategy that accounts for the contributions of a keyword under both last-click and first-click strategies, and inform the advertiser how much it can improve its ROI by changing the attribution strategy appropriately. Note that the purpose of this research is not to find the optimal attribution strategy. Instead, we intend to highlight the importance of accounting for the attribution in paid search advertising (which has not yet been examined in the literature) and provide a modeling framework for advertisers to better understand the ROI of their search campaigns, identify better attribution strategies, allocate their keyword marketing budget more efficiently, and improve their ROI on search investments.

In developing our model, we follow the norm in extant research of simultaneously modeling the advertiser’s bidding decision, the search engine’s position decision, and the customer’s click-through rate and conversion rate (Ghose and Yang 2009; Agarwal et al. 2011; and Rutz et al. 2012). Similar to this extant research, we explicitly capture the endogenous relationship between the ad position and the consumer’s responses. Additionally, we consider the supply side – the advertiser’s bidding decision and the resulting revenue outcomes – by modeling the focal firm's decision process (Kumar et al. 2011), in which the current bid is determined based on the most recent revenue outcomes. Our research is also related to the growing body of literature that has shed light on the optimal bid (Skiera and Abou Nabout 2013, Yao and Mela 2011), the impact of ad agency compensation, ranking mechanism, customer reviews, etc. on search campaign profits (Abou Nabout et al. 2012, Ghose et al. 2014), the synergy between paid searches and organic searches (Yang and Ghose 2010), and the synergy between paid search marketing and offline marketing (Joo et al. 2013). However, we do not
explore these factors in our research - the bidding algorithm that the advertiser uses remains the same across different attribution strategies, the ad agency’s compensation is a fixed fee structure that does not impact the bidding process, and the focal advertiser’s organic ranking is also low enough to ignore the possibility of spillovers across organic and paid searches.

Our research is also related to recent work in attribution models, which has examined the influence of attribution on marketing effectiveness (Berman 2013, Li and Kannan 2014). Li and Kannan (2014) find significant differences in realized ROI resulting from different attribution methods in the multichannel context. Unlike in our research where we have data only at the aggregate keyword level, their approach takes into account spillovers across channels based on the entire purchase funnel data at the individual touch point level. Similarly, while Rutz and Bucklin (2011) examine spillovers across keywords – from generic to branded, our research does not focus on that issue due to the aggregate nature of our data. However, no research has examined the impact of attribution methods on the realized keyword effectiveness in paid search campaigns. Our study fills this gap by analyzing the impact of attribution strategies on the realized effectiveness in terms of ROI at the keyword level, and how this impact varies across heterogeneous keywords.

3. Institutional Context, Data, and Model Free Evidence

The focal firm in our study is an online jewelry retailer with no physical store. This jewelry retailer sells its own brand of jewelry on its website and acquires customers purely through advertising at two search engines – Google and Bing. There is no offline advertising done by the firm. The firm works with only one ad agency for its paid search campaign on a fixed monthly fee basis. The ad agency implements the paid search campaign on the firm’s behalf under a specific fixed daily budget set by the firm (as in Figure 2). The ad agency uses a
proprietary bidding algorithm (Kamath 2011) to do the daily bidding on keywords based on the daily budget (we will provide more details about this bidding algorithm in the next section). Given the fixed fee arrangement, ad agency’s incentives do not play a role in the bidding (cf. Abou Nabout et al. 2012).

The firm was using last-click attribution for assigning credit to keywords until May of 2012. Around this time Google espoused the idea that customers search for generic and broad keywords first, gather information over time and then search for narrower and more specific keywords in the later part of their respective purchase funnel. The firm felt that using last-click attribution was resulting in the narrower and branded terms getting more credit than they deserved. Since the ad agency was solving a bid optimization problem under a budget constraint for a given time period, this could result in the agency allocating less spending to the broad upper funnel keywords. If the agency did not bid aggressively for broad upper funnel keywords, it would result in fewer potential customers being part of their upper purchase funnel and subsequently result in fewer people clicking on the branded and narrower search keywords. The firm believed that switching to a first-click attribution strategy would correct for this bias and instructed the ad agency to experiment with a change in the attribution strategy in order to observe the impact on overall revenues. Therefore, we consider the changeover as an exogenous shock. Thus, if a customer clicked on multiple keywords in his/her purchase journey prior to a conversion, the ad agency used last-click attribution to assign conversion credits prior to May 2, 2012, and used first-click attribution from May 2, 2012, and onwards. The change in attribution strategy gives rise to a quasi-experiment which offers a unique opportunity to examine how the attribution strategies influence the imputed ROI of each keyword in leading to conversions.
The advertiser bids on about 200,000 keywords\(^3\) at Google and Bing, and 505 keywords get at least one click during the data collection period of January 21\(^{st}\) to July 18\(^{th}\), 2012. The data contain daily information at the keyword level, including the number of impressions, the number of clicks, average cost-per-click, average position, quality score\(^4\), and the disguised revenue of the keyword for each day. Table 1 reports the summary statistics of these keyword characteristics across the entire data period (columns 1 and 2). We do not have access to the click-through data at the cookie ID level, which are used internally by the ad agency and the firm to attribute conversion credit. The focal firm spent around $4M in paid search advertising annually during the time of this study and based on the spending, it was at 75th percentile among the 151 clients the ad agency had at that time, and placed at 33rd percentile in terms of the number of keywords that had at least one click in 6 months. Thus, the focal firm is fairly representative of the firms spending on paid search advertising\(^5\).

Figure 4 shows the daily budget, cost, and attributed revenue for all keywords. The budget and cost figures are fairly constant from the beginning to mid-May, and then increase from late May to the end of data window. The ad agency is given a fixed daily budget by the firm and decides the bid level for each keyword on a daily basis. Although the daily budget is a binding constraint in the search engine bidding algorithm, it is not a strict binding constraint in the agency’s implementation\(^6\). The total costs of all the search campaigns may exceed the daily

\(^3\) The firm bids on a large pool of keywords, which does not lead to extra costs as the firm only pays when keywords are clicked. The number of keywords clicked remained fairly the same over time (see Web Appendix C for the number of unique keywords clicked each month and across attribution strategies). Thus, we can fairly conclude that selection bias does not exist in our analysis and the data generating process remains the same across strategies.

\(^4\) Both Google and Bing use quality score and bid to determine the position of search results. Quality score is on a scale from 1 to 10 at both search engines, where 10 is the best score.

\(^6\) The search engines allow the advertiser to set a “budget” and when the advertiser’s spending reaches this “budget” limit, their search ads will no longer be shown in response to the customer’s search queries. In our context, the ad
budget specified by the firm as shown in Figure 4. There are a few revenue spikes around Valentine’s Day and Mother’s Day. Both holidays will be explicitly captured in the model and discussed in the next section. Table 1 provides the daily average of the various metrics under the last-click strategy (column 3) and the first-click strategy (column4). The average impressions are higher under first-click, and so are the average clicks, checkouts and checkout revenues (which are disguised figures). However, the costs (and budget allocated) are much higher under the first-click strategy. Note that budget is endogenously reflecting the seasonality and promotions at the firm’s website. The ratio of average revenues over average costs is 1.08 under the last-click strategy while it is only 0.77 under the first-click strategy, indicating much lower ROI for the first-click strategy. Although, the average position of the keywords under the first-click condition is smaller (and better), all the other measures such as average CPC, average quality score, average click-through rate and average conversion rate are worse than those under the last-click strategy. The model free evidence seems to indicate that first-click leads to less efficient spending of acquisition dollars, but the complex relationships between these metrics make it difficult to unravel and parcel out the individual effects. This is where the model we propose plays a critical role.

[Insert Figure 4 about here]

4. Model

In this section, we model the supply and demand sides of paid search ads using a simultaneous equations system. On the demand side, we model the advertiser’s revenue outcome for each keyword which depends on the customer responses and the attribution strategy being used. The customer responses are modeled through aggregate click-through rate and conversion
rate. On the supply side, we model the advertiser’s bidding decision for each keyword on each
day based on the previously attributed revenue for each keyword and the daily budget. We then
close the loop as in Figure 2 by modeling the search engine’s ad position decision for each
keyword. In discussing each equation, we also justify the variables selected based on theory and
extant research.

4.1. The advertiser’s revenue model

The advertiser’s total attributed revenue\(^7\) from keyword \(i\) on day \(t\), \(R_{it}\), can be factored as

\[
R_{it} = \text{Impression}_{it} \times \text{CTR}_{it} \times \text{CONV}_{it} \times \text{AR}_{it},
\]

\[(1')\]

where \(\text{Impression}_{it}\) is the number of impressions of keyword \(i\) on day \(t\); \(\text{CTR}_{it}\) is the

click-through rate (the number of clicks on the ad divided by the number of impressions of the
ad); \(\text{CONV}_{it}\) is the conversion rate (the number of conversions resulting from the clicks on the ad
divided by the number of clicks on the ad); and \(\text{AR}_{it}\) is the average revenue per conversion for

keyword \(i\) at time \(t\). The first three variables (\(\text{Impression}_{it}, \text{CTR}_{it}\), and \(\text{CONV}_{it}\)) are directly

represented in equation (1) that follows, whereas \(\text{AR}_{it}\), the average revenue imputed for keyword

\(i\) on day \(t\), can be influenced by the keyword characteristics (e.g., Agarwal et al. 2011), the

advertiser’s attribution strategy, and the overall spending on the products based on promotions at
the website, seasonal effects, etc. We therefore capture \(\text{AR}_{it}\) as a function of these variables as

shown in equation (1).

\[
\ln(R_{it}) = \alpha_0 + \alpha_1 \ln(\text{Impression}_{it}) + \alpha_2 \text{CTR}_{it} + \alpha_3 \text{CONV}_{it} + \alpha_4 \text{Specificity}_i + \alpha_5 \text{Specificity}_i^2 + \alpha_6 \text{FC}_i + \alpha_7 \text{FC}_i \times \text{Specificity}_i + \alpha_8 \ln(\text{Budget}_i) + \epsilon_{it}
\]

\[(1)\]

\(^7\) The calculation of \(R_{it}\) is straight-forward when the last-click strategy is used. However, when the first-click strategy
is used, although the impressions and clicks might occur at time \(t\), the conversion could materialize at a later point of
time, say at time \((t+10)\). The data for \(R_{it}\) under first-click strategy in equation (1) contains all the conversions that
have occurred after time \(t\), such as the conversion at \((t+10)\) in our above example. The data may have a censoring
problem in the sense that some keywords might deserve credit for the conversions that could have materialized after
we stopped the data collection. We will provide a robustness check in Web Appendix D to examine this issue.
The main keyword characteristic we relate to the average revenue is how broad or specific a keyword is. Extant literature finds that the specificity of a keyword (measure of how broad or specific a keyword is within a product category – for example, “jewelry” versus “gold ring with sapphire”) influences the realized effectiveness of search campaigns (Agarwal et al. 2011; Ghose and Yang 2009; Rutz et al. 2012). We capture this characteristic of keyword i with Specificity_i in equation (1). A larger value for Specificity_i indicates that keyword i is more specific, or less broad. To obtain these specificity scores for our research, each keyword in our application was rated by two independent judges on the specificity dimension. (Two alternative measures of Specificity were also examined and reported in Web Appendix E). To account for the nonlinear effects of keyword specificity, we include the quadratic term Specificity_i^2.

The changeover in the attribution strategy is captured by FC_t, in equation (1), where FC_t is 1 when first-click attribution was used (on or after May 2nd) and 0 when last-click attribution was used (before May 2nd). All else being equal, a positive coefficient of FC_t implies that the first-click attribution leads to a higher R_{it} summed over all keywords i and all times t. In addition, we capture the possible interaction effects between keyword specificity and the attribution strategies. The amount spent at the website varies over time as a function of seasonality and/or promotions at the website. Although these factors are unobserved, we know that the firm determines and varies its daily budget, Budget_t, for search advertising based on these factors (that is, an increase in acquisition cost is justified by the expected increase in average customer spend at the website). Thus, we use Budget_t as a proxy in equation (1) to capture the above effects. Finally, the error term ε_{it} follows Normal distribution.

8 We also included branded or non-branded characteristic of a keyword in equation (1) but it was not significant.
9 Two independent judges were hired to evaluate the specificity of all the keywords. They were not told of the research objectives. Each judge independently rated each keyword an integer specificity score within the range [1, 5], where more specific keywords received higher scores. The mean of judge ratings was 2.383 and the median is 2. The inter-judge reliability according to Perreault and Leigh’s (1989) index of reliability is 0.82, well above the 0.7 threshold recommended for exploratory research (Rust and Cooil 1994).
4.2. The advertiser’s bidding model

The bidding algorithm that the advertiser uses solves an optimization problem to pick the keywords and their associated bid-levels to maximize the expected revenue subject to the budget constraint. While the bidding algorithm used is proprietary, it is very representative of the general approach used in the industry (Web Appendix F provides more details of the algorithm used by the focal firm and the types of algorithm used in industry). The algorithm orders each keyword-bid level combination in terms of expected ROI from highest to lowest. It starts picking from the top such that each keyword is picked only once till the total expected costs is just under or equal the available budget constraint. This bin-packing optimization algorithm maximizes the expected revenue. The generation of bids is as follows:

The Bidding Procedure (identical under both attribution strategies):

1. Apply the attribution strategy in effect in the past (last-click or first-click that was used in past data) to historically observed path-to-conversion data.
2. Based on the past attributed (last-click or first-click) revenue data, build a time-series model that predicts the expected revenue for a given keyword for the following day as a function of the bid levels.
3. Again, based on past daily cost data, for each keyword, build a time-series model that predicts the expected spending for the following day as a function of the bid levels. (There is no relevance of attribution to the cost model).
4. Solve the bin-packing optimization problem for the keywords that were modeled for in steps 2 and 3: maximize the expected revenue across all the keywords such that the expected spending across all the keywords is less than the budget constraint. Since revenue and cost for a given keyword are a function of bid, the argmax for the optimization problem will be the optimal bid level for the next day.

The above procedure computes the bid level for a keyword for each search engine and also adjusts bids using heuristics based on quality score changes (although these changes are quite rare), search engine effects and specific branded keywords. Given large decay rates, the time-series also heavily weights the most recent revenue (the day before) over revenue earned in the more distant past.
Given the above variables used in the generation of the bid, we model the advertiser’s bidding decision on keyword i on day t, bid_{it}, conditional on the budget on day t and the expected revenue of keyword i. Specifically, we use the lagged-revenue-per-click $rpc_{i,t-1}$ as a proxy of the expected revenue of keyword i in the current period10. Thus bid_{it} is proportional to both $rpc_{i,t-1}$ and $Budget_t$, and further heuristically adjusted based on quality score, QS_i, search engine and branded characteristics of keyword, which leads to equation (2’). That is,

$$bid_{it} \propto QS_i \propto rpc_{i,t-1} \times Budget_t \times \text{(Adj.Factor for search engine)} \times \text{(Adj.Factor for branded keyword)}$$

Taking the log transformation of this relationship and rearranging, we have

$$\ln(bid_{it}) = \beta_0 + \beta_1 \ln(rpc_{i,t-1}) + \beta_2 \ln(Budget_t) + \beta_3 \ln(QS_i) + \beta_4 Google_i + \beta_5 Brand_i + \xi_{it} \quad (2')$$

Since the observations of bid_{it} are not available, we instead use the average cost-per-click, CPC_{it}, as a proxy for bid_{it} (Ghose and Yang 2009; Abou Nabout et al. 2014) in equation (2). The advertiser bids for keywords at both Google and Bing, thus the dummy variable $Google_i$ captures the different competitive environment at the two search engines. Similarly, the variable $Brand_i$ captures the different competitive levels between the branded keywords and other keywords. The error term ξ_{it} follows Normal distribution.

$$\ln(CPC_{it}) = \beta_0 + \beta_1 \ln(rpc_{i,t-1}) + \beta_2 \ln(Budget_t) + \beta_3 \ln(QS_i) + \beta_4 Google_i + \beta_5 Brand_i + \xi_{it} \quad (2)$$

4.3. The search engine’s ad position decision

The search engine uses the bid multiplied by the quality score to determine the positions of paid search ads associated with the same keyword. That is, the ad position, $Position_{it}$, is influenced by CPC_{it} (as a proxy for bid_{it}) and QS_{it}. In line with previous empirical research

10 We also added lags of revenues greater than one, but they were insignificant given the large decay rates used in the bidding algorithm time-series models.
(Ghose and Yang 2009, Agarwal et al. 2011), we use a log-log model to capture this relationship. Note that Position\(_i\) is the daily average position of keyword \(i\) on day \(t\), which is a continuous variable. Again, we include the dummy variables Google\(_i\) and Brand\(_i\), and also control for the possible seasonality with the dummy variables for Valentine’s Day (equal to 1 during the two weeks prior to Valentine’s Day) and Mother’s Day (equal to 1 during the two weeks prior to the Mother’s Day)\(^{11}\). The error term \(\zeta_{it}\) follows Normal distribution.

\[
\ln(\text{Position}_{it}) = \theta_0 + \theta_1 \ln(\text{CPC}_{it}) + \theta_2 \ln(QS_{it}) + \theta_3 \text{Google}_i + \theta_4 \text{Brand}_i + \theta_5 \text{Valentine}_i + \theta_6 \text{Mother}_i + \zeta_{it}
\]

(3)

4.4. The aggregate customer’s click-through rate and conversion rate

On the customer’s side, we model the aggregate click-through rate and conversion rate. The aggregate click-through rate of keyword \(i\) on day \(t\) is modeled in a logistic regression as follows:

\[
\text{CTR}_{it} = \frac{\exp(y_{it})}{1 + \exp(y_{it})} \quad \text{and} \\

y_{it} = \mu_0 + \mu_1 \ln(\text{Position}_{it}) + \mu_2 \ln(QS_{it}) + \mu_3 \text{Specificity}_i + \mu_4 \text{Specificity}_i^2 + \mu_5 \text{Brand}_i + \mu_6 \text{Valentine}_i + \mu_7 \text{Mother}_i + \eta_{it}
\]

(4)

Following the extant literature, we model the aggregate click-through rate \(\text{CTR}_{it}\) as a function of the ad position, Position\(_{it}\),\(^{\text{Ghose and Yang 2009}}\), the expected quality of the ad (we use QS\(_{it}\) as a proxy, cf. Agarwal et al. 2011), and the keyword specificity - Specificity\(_i\), and Specificity\(_i^2\),\(^{\text{Ghose and Yang 2009, Rutz et al. 2012}}\). In addition, the impact of branded keywords and seasonality is controlled with the dummy variables, Brand\(_i\), Valentine\(_i\) and Mother\(_i\). Since we use search-engine-specific quality scores, the search engine effects are already inherent in this equation. The error term \(\eta_{it}\) follows extreme value distribution.

\(^{11}\) We also tried including a dummy variable for weekends (Friday, Saturday, and Sunday), but this weekend dummy was not significant in any of equation (3) – (5).
Furthermore, we model the aggregate conversion rate of keyword \(i \) on day \(t \) as follows:

\[
CONV_{it} = \frac{\exp(z_{it})}{1 + \exp(z_{it})}
\]

\[
z_{it} = \phi_0 + \phi_1 \ln(\text{Position}_i) + \phi_2 \text{Specificity}_i + \phi_3 \text{Specificity}_i^2 + \phi_4 \text{Brand}_i + \phi_5 \text{Valentine}_t + \phi_6 \text{Mother}_t + \delta_{it}
\]

(5)

Several studies have shown that the conversion rate \(CONV_{it} \) is influenced by \(\text{Position}_i \) (Agarwal et al. 2011; Ghose et al. 2014; Ghose and Yang 2009; Yang and Ghose 2010) and keyword specificity - \(\text{Specificity}_i \) and \(\text{Specificity}_i^2 \) (Rutz et al. 2012). In addition, we also control for the presence of brand name (\(\text{Brand}_i \)) and seasonality (\(\text{Valentine}_t \) and \(\text{Mother}_t \)). We do not include quality score \(\text{QS}_i \) into the conversion decision due to its insignificance on inclusion, which is consistent with previous studies (Agarwal et al. 2011; Ghose et al. 2014) which show that once the customer arrives at the firm’s website and starts shopping, the quality of the search ad is no longer relevant. The error term \(\delta_{it} \) follows extreme value distribution.

We specify an unrestricted variance-covariance matrix for the error terms in equations (1) – (5) and estimate it as part of the 3SLS estimation procedure.

The focus of our research is to explore the impact of attribution strategies on the realized ROI. Note that the attribution variable, \(FC_t \), is explicitly captured in only equation (1), while its impact indirectly influences equations (2) – (5). First, the attribution strategy directly affect the imputed revenue of a keyword as shown in equation (1). Then, in equation (2), the revenue-per-click, \(rpc_{i,t-1} \), is based on the imputed revenue in equation (1) at time (\(t-1 \)) divided by the number of clicks at time (\(t-1 \)). That is, \(rpc_{i,t-1} \) already incorporates the impact of the attribution. In the rest of the three equations, the impact of attribution is not directly captured: in equation (3), the ranking decisions at the search engine are based on the bids and the quality scores, regardless of
the attribution strategy used by the advertiser; on the customer’s side, the attribution is not reflected in either equation (4) or equation (5) because the customer is not aware of the change in the advertiser’s attribution strategy12. However, the indirect impact of attribution exists – the attribution strategy determines $rpc_{t,i-1}$ and $rpc_{t,i-1}$ influences the bid in equation (2), and then the bid determines the ad position in equation (3), which in turn affects the click-through rates in equation (4) and the conversion rates in equation (5). Going back to equation (1), the click-through rate and conversion rate, together with endogenous variables $Impression_{it}$ and $Budget_{t}$, determines the imputed revenue of a keyword. This is how the models link through the endogenous variables $(R_{it}, rpc_{t,i-1}, CPC_{it}, Position_{it}, CTR_{it}, CONV_{it}, Impression_{it},$ and $Budget_{t})$ and how the attribution strategy plays a role in this endogenous equations system.

4.5. Exclusion Restrictions and Identification

The equations system (equations 1 – 5) has simultaneity bias because some dependent variables are explanatory variables in at least one of the other four equations. Such dependence can create endogeneity problems and bias the estimation outcome. To account for such simultaneity and endogeneity issues, we use three-stage least squares (3SLS) method to jointly estimate all the parameters in equations (1) – (5).

Table 2 shows the endogenous variables included in equations (1) – (5) as well as the excluded exogenous variables in each of these equations13. The justification for exclusion of the variables below along with the justification for inclusion of variables in the equations as discussed in Section 4.1 through 4.4 presents our complete arguments for exclusion restrictions.

12 In fact, this ensures that the data generating process does not change as customers’ clicking and conversion behavior is the same regardless of the attribution strategy in place. In Web Appendix G we show empirical evidence of this by comparing the cost-per-click, click through rates and conversion rates of keywords which have same positions under first-click and last-click strategies. They remain the same across the different strategies.

13 Note that although the quality score depends on some factors (e.g. click-through rates) which are endogenously determined in this simultaneous equations system, the quality score is given by the search engine based on a long period of historical data and most of the time that value remains constant. Only around 11% (57) out of the 505 keywords have one or two changes in their quality scores during the six-month data window. Thus, we treat quality score as an exogenous variable in the equations system.
quality score, \(QS_i \), is excluded in the revenue equation (Equation (1)) in line with previous studies (Agarwal et al. 2011; Ghose et al. 2014) who argue that once the customer arrives at the firm’s website and starts shopping, the quality of the search ad is no longer relevant. Our research also supports this finding as on adding \(QS_i \) into equation (1) and (5), its coefficients are not significant in either equation. In addition, the included variables \(Impression_i, CTR_i, \) and \(CONV_i \) are all directly and significantly influenced by \(Brand_i \) and holiday dummies (equations (4) and (5)), and \(QS_i \) (equation (4)). Moreover, the variable \(Budget_i \) (included in equation (1)) picks up the variations in the daily advertising expense, seasonality, as well as any promotions at the website, all of which are considered and taken into account when the budget is determined by the firm. \(Brand_i \) could potentially be included in equation (1), but it is insignificant on inclusion indicating that its impact through \(CTR_i, \) and \(CONV_i \) is much stronger.

[Insert Table 2 About Here]

For equation (2), we include only those variables used in the generation of the bid by the advertiser such as \(r_{pc,i,t-1}, Budget_i, QS_i, Brand_i \), and Search engine indicator \(Google_i \) (see bidding algorithm in Section 4.2). As in equation (1), \(Budget_i \) already captures the variation in advertising expenditure, seasonality effects, and promotions at the website. We have thus excluded keyword specificity measures and holiday dummies from this equation as they are not explicitly considered in the bid generation as the other included variables.

Likewise, in equation (3), a decision made by the search engines, we exclude keyword specificity measures and instead include \(Brand_i \) and \(Google_i \). Since \(Budget_i \) is not observed by the search engine, we include the holiday dummies instead. \(QS_i \) and bid (CPC) are also included as they are considered critical for the position obtained by a keyword per extant research. Equations (4) and (5), modeling consumers’ click-through rate and conversion rate, include
holiday dummies, whether the keyword is branded or not, the position of the keyword, etc.

Budget is excluded as it is not observed by consumers and is in any case immaterial to consumers’ decision-making. Search engine dummy is excluded in the click-through equation (4) because the QS_{it} captures the variations across search engine – and the inclusion of $Google_i$ is also insignificant. For equation (5), conversion happens at the website and search engine is not relevant at that point. QS_{it} is excluded in equation (5), again based on Agarwal et al. (2011) and Ghose et al. (2014), and its insignificance on inclusion in the equation shows the conditional independence.

Finally, the number of endogenous variables is strictly less than the number of excluded exogenous variables in each equation and, thus, it satisfies the order conditions. The system also satisfies the rank conditions and thus we are able to identify all the parameters in this simultaneous equations system.

5. Empirical Analysis

5.1. Results

Table 3 through 7 present the estimation results of equation (1) – (5) with 3SLS method, while the according variance-covariance matrix among these equations is provided in Table 8.

Table 3 provides the coefficient estimates of equation (1). The positive and significant signs for $\ln(\text{Impression}_t)$, CTR_t and CONV_t indicate that a higher volume of impression and higher click-through rate and conversion rate are associated with higher revenue. In addition, the coefficient of $\ln(Budget_t)$ is also positive and significant, indicating that more marketing dollars can lead to more revenue.
The specificity of a keyword, $Specificity_i$, is measured by judges’ ratings of a keyword in the range $[1, 5]$. The coefficient of $Specificity_i$ is positive and significant, while the coefficient of $Specificity_i^2$ is not significant, demonstrating a monotonic increasing curve for the relationship between keyword specificity and revenue. That is, everything else being equal, the realized revenue is higher for more specific keywords, when the firm is using the last-click attribution.

Next, let us look into the impact of attribution dummy and its interaction with the keyword specificity. The coefficients of FC_i and $FC_i \times Specificity_i$ are both negative and significant, indicating that switching from the last-click attribution to the first-click attribution will hurt the advertiser’s revenue, and this negative impact is more prominent for specific keywords. In other words, when the firm is using the first-click attribution, the coefficient for $Specificity_i$ is $(0.035-0.070=-)0.035$, which implies a negative relationship between keyword specificity and revenue. Note that this overall impact of attribution strategy (α_6) is determined by the relative effectiveness of advertiser’s keywords in its portfolio. If the advertiser’s keyword portfolio contains more effective upper funnel keywords, α_6 is more likely to be positive, i.e. such a keyword portfolio would generate more overall revenue with first-click strategy. On the other hand, if the advertiser’s keywords portfolio contains more lower funnel keywords, then α_6 is more like to be negative (as in the focal study). The implication is that such a keyword portfolio leads to higher overall revenue when using the last-click attribution strategy. In the next subsection, we will revisit the results in Table 3 and interpret them at the keyword level.

The coefficient estimates of equation (2) are presented in Table 4. The results reveal a positive and significant relationship between the current bid on a keyword (cost-per-click acting as a proxy) and its lagged revenue-per-click. Meanwhile, the coefficient of $\ln(Budget_t)$ is positive and significant, indicating that the advertiser bids more when a higher level of budget is available. Furthermore, when the quality score of a keyword is higher, the advertiser tends to
lower the bid on the keyword as it stand a better chance to get a good position even with a lower bid. Although we include a dummy variable, $Google_i$, to control for the possibly different competition environment at Google versus Bing, it turns out to be insignificant. However, $Brand_i$, is significant and negative. It implies that the advertiser bids significantly less on branded keywords due to the lower competition level. In sum, all the signs of the coefficient estimates in Table 4 are as expected.

In Table 5, the dependent variable is $\ln(Position_{it})$, a higher value of which means the ad is placed in a lower, less advantageous position. The negative coefficient of $\ln(CPC_{it})$ indicates that when the advertiser bids more on a keyword, the value of $\ln(Position_{it})$ is smaller and, thus, the ad is placed in a better position. Similarly, the negative coefficient of $\ln(QS_{it})$ indicates that when the expected quality (quality score as a proxy) of this keyword is higher, the ad position is better. Again, we have controlled for the different search engines, the coefficients of which are negative and significant, implying the chance of getting a better ad position is greater at Google than at Bing. Furthermore, the presence of the brand name in the keyword can improve the ad position. As for the seasonality, during the two weeks before Valentine’s Day as well as the two weeks before Mother’s Day, the position is less advantageous (positive and significant coefficients) at the same cost-per-click as compared with other times, reflecting a more competitive jewelry market before these two holidays.

Table 6 provides the coefficient estimates of equation (4), which is the logistic regression of click-through rate. The coefficient of $\ln(Position_{it})$ is negative and significant, indicating that when the paid search ad moves to a less advantageous position (the value of $\ln(Position_{it})$ becomes larger), the click-through rate would decrease, consistent with previous findings (Agarwal et al. 2011; Ghose et al. 2014; Ghose and Yang 2009; Rutz et al. 2012). In addition, the
coefficient of $\ln(QS_{it})$ is 1.685, positive and significant, implying a higher quality score can increase the click-through rate. The coefficient of $Specificity_i$ and $Specificity_i^2$ shows an inverted U-shaped curve with respect to the click-through-rate, with the inflection point at -2.295, smaller than the minimum value of $Specificity_i$. Thus, the relationship between the click-through-rate and keyword specificity is negative. That is, the click-through rate for specific keywords are lower compared with broad keywords with everything else being equal. Further, the presence of the brand name in the keyword is not significant. Although the click-through rate during the two weeks before Valentine’s Day is higher, we do not find a positive and significant impact before Mother’s Day, which may imply that customers were searching more actively for Valentine’s Day gifts than for Mother’s Day gifts or jewelry for other occasions.

Table 7 shows the coefficient estimates of equation (5), the coefficient of $\ln(Position_{it})$ is not significant, indicating that the conversion rates do not change significantly as the position of the ad moves up or down in the result list, echoing the finding by Agarwal et al. (2011). This has an important implication: when the advertisers spend more to win a better ranking in the result list, i.e. a smaller value for $\ln(Position_{it})$, the click-through rate increases as shown in Table 6, but the change in conversion rate is very marginal and not significant according to the results in Table 7. Moreover, neither the linear term nor the quadratic term of the keyword specificity is significant at the 5% level, and thus we are not able to draw conclusions on conversion probability based on whether a customer is searching a broad keyword or a specific keyword. As for the control variables, the presence of the brand name in the keyword and both Valentine’s Day and Mother’s Day have a positive and significant impact on the conversion rate.

Finally, robustness checks with alternative models with different data windows and with fixed effects (Web Appendix D) show that our above results are quite stable. Additionally, in
comparing the predictions of proposed model with alternative models, such as Ghose and Yang’s model (2009) and the model without supply side (Web Appendix H), our model performs better.

5.2. Interpretation at the Keyword Level

Next, we interpret the results in Tables 3 – 7 at the keyword level.

We consider two keywords – “onyx ring” and “black onyx sterling silver ring” – as examples. According to the information provided by the firm (based on a random sample of 20% of their web visitors during September, 2012 to February, 2013), the keyword “onyx ring” appeared 60 times as the first clicked keyword in customers’ purchase journeys, and appeared 41 times as the last clicked keywords. As for the keyword “black onyx sterling silver ring,” it appeared 3 times as the first clicked keyword and 8 times as the last clicked keyword in customers’ purchase journeys. This is consistent with our hypothesis that the broad keywords are more likely to be used in the upper purchase funnel, whereas specific keywords are more likely to be used in the lower purchase funnel.

We decompose the impact of keyword specificity and attribution on the revenue of two example keywords. The keyword specificity, Specificity_i, is 2 according to judges’ ratings for keyword “onyx ring”, and the value of $\alpha_4 \text{Specificity}_i + \alpha_3 \text{Specificity}_i^2$ is 0.082. For a more specific keyword such as “black onyx sterling silver ring”, Specificity_i is 4, and the value of $\alpha_4 \text{Specificity}_i + \alpha_3 \text{Specificity}_i^2$ is 0.188. When the advertiser uses the first-click attribution, $\alpha_6 FC_i + \alpha_7 FC_i \times \text{Specificity}_i$ is -0.298 for keyword “onyx ring” and -0.438 for keyword “black onyx sterling silver ring”. Assuming all else being equal, the impact of keyword specificity, the attribution dummy and the interaction of both on log-revenue under first-click strategy is -0.216 for keyword “onyx ring” and -0.250 for keyword “black onyx sterling silver ring” – changes that render a more negative impact on the revenue of more specific keyword.
The changes in revenue will also lead to a cascading effect on the CPC, ad position, click-through rate and conversion rate. Table 9 shows the changes in the average predicted revenue, CPC, ad position, click-through rate, and conversion rate for a sample of keywords. For example, in Table 9 we find that after the firm switches to first-click attribution the daily revenue of “onyx ring” increases by 8.615 and its CPC increases by 1.796, while the position moves up by 1.321. The click-through rate has increased by 2.433%, while the change in conversion is negative but fairly marginal. Overall, using the first-click strategy promotes the broad keywords, such as “onyx ring” by increasing their bid level to get a higher position, which could then lead to a higher click-through rate. Compared with the corresponding values under the last-click strategy, the higher click-through rate and the same level of conversion rate as before implies higher attributed revenue, which then leads to a higher bid on broad keywords. The changes on the specific keyword, “black onyx sterling silver ring” are very different: under the first-click strategy, the average daily revenue decreases by 5.344. Although its CPC is higher by 0.454, the ad position moves down and the resulting click-through rate is lower while the conversion rate is higher but negligible. Overall, the first-click strategy decreases the daily revenue of this specific keyword.

[Insert Table 9 About Here]

Note that the above discussion focuses on the general directions of changes. For example, the broad keyword “promise rings for him” is bid lower under the first-click condition and its average ad position is slightly lower as well. Although the lower ad position implies a lower click-through rate (Agarwal et al. 2011; Ghose and Yang 2009; Rutz et al. 2012), this could be compensated for by other factors in equation (4) such as the quality score, and eventually lead to a positive change in the click-through rate of 0.470%.
5.3. Policy Simulation: A Better Attribution Strategy

The focal firm has experimented with last-click attribution strategy and first-click attribution strategy. Either strategy assigns the conversion credit only to a single click on the paid search ads. Next, we simulate a scenario where the advertiser uses a combined (weighted) attribution strategy, which considers the potential contribution of a keyword under both the last-click and the first-click attribution strategies and then allocate the budget accordingly. Note this is not the optimal attribution strategy. Rather, we intend to show that with an improved attribution scheme, which considers the potential contribution of a keyword in both upper funnel and lower funnel of a purchase journey and assigns appropriate conversion credit to the keyword, the advertiser can increase revenue with the same budget.

For each keyword, we calculate the average lagged revenue-per-click under both the first-click attribution ($r_{FC,i}$) and the last-click attribution ($r_{LC,i}$). Then we calculate a weighted sum of both sets of average lagged revenue-per-click as:

$$r_{New,i} = \alpha \cdot r_{FC,i} + (1 - \alpha) \cdot r_{LC,i}$$

(6),

where α is between 0% (i.e. last-click strategy) to 100% (i.e. first-click strategy), to account for the potential contribution of a keyword in both upper funnel and lower funnel of a purchase journey. Using the $r_{New,i}$ and the coefficient estimates of equation (2) in Table 4, we can predict the bid on each keyword and then plug the predicted bid into equation (3) to generate predicted ad position. Next, the predicted ad position can help us predict the click-through rate and conversion rate with equation (4) and (5), respectively. The changes in click-through rate and conversion rate will eventually influence the revenue outcome in equation (1). In Web Appendix I we show that a convex combination of revenue under FC and LC can provide us with an attribution strategy with revenue more than or equal to the revenue under either LC or FC strategy and be a lower bound of the optimal revenue.
We calculate the expected costs with predicted CPC in equation (2), predicted CTR in equation (4), and the average impression level we observe in the data. Then we rank all the keywords according to its expected ROI, i.e. expected revenue-per-click divided by CPC, and pick keywords from the highest ROI to the lowest such that the total expected costs with the keywords picked are no larger than the budget (this is the underlying logic of the bidding algorithm and thus accounts for the budget constraint). Figure 5 presents the relationship between α and the simulated revenue. The maximum revenue is achieved when α is 41.3%, and the revenue is 3.6% higher than the average revenue under the last-click strategy.

[Insert Figure 5 about here]

In addition, we have investigated a different scenario where the revenue-per-click in the simulation, rpc_{New}^i, is the larger one between rpc_{i}^{LC} and rpc_{i}^{FC}, instead of as in equation (6). Note that we use the actual revenue-per-click under each strategy rather than predict it using equation (6). Using this strategy with the same budget constraint, the simulated revenue is 1.7% higher than the mean revenue under the last-click strategy, still a better strategy than both LC and FC.

Based on the information provided by the advertiser, 85% of the visitors (defined by unique cookie IDs) only click through their paid search ads once, while most of the remaining 15% visitors have two or three clicks. Yet, the difference in attribution strategy is able to shift the position of the keywords it bids for. The positions of the keywords in the firm’s portfolio under the first-click strategy underperform the portfolio mix under the last-click strategy. By changing the attribution strategy to a weighted one as suggested by the policy simulation, the new mix of keywords and their positions can improve the revenue by as much as 3.6%. This has a significant impact on reducing customer acquisition costs using search campaigns.
6. Contributions, Implications and Limitations

The overarching contribution of our paper is to make search campaigns more efficient and effective. As a means to that objective, we examine the complex relationships among the players in the paid search market – the ad agency, the client firm, the search engine, and the consumer – the decisions and outcome characterizing each player, and the interrelationships among these decisions and outcomes. Using a six-month panel data of 505 keywords from the ad agency of an online jewelry retailer, we jointly model relationships among the firm’s revenue outcome and (ad agency’s) bidding decision, the search engine’s ranking decision, and the consumer’s click-through rate and conversion rate, cope with the potential simultaneity bias with simultaneous equations model, and address the endogeneity with a 3SLS estimation procedure. While extant research has modeled the demand side of such relationships (e.g., Ghose and Yang 2009), we also model the supply side and provide a complete picture of the search ecosystem.

We focus on the impact of attribution strategy on the realized ROI of keywords in search campaigns, an issue that has not been examined in prior research. Attribution is an important problem for all advertisers because it drives resource allocation. When a firm has a finite budget (which is true for all advertisers regardless of size) and when the maximum amount the firm can possibly spend on all keywords is greater than the available budget, the attribution strategy becomes a very relevant and important problem – as it affects the amount invested in each keyword and which set of keywords are bid high and which set are bid low and thereby, the efficiency of customer acquisition. This issue is the same for all firms whether it is a large firm like Amazon or a small firm as long as they are bidding for multiple keywords, except that the budget size and the number of keywords considered could be different depending on the size of the firm.

A useful analogy for attribution is cost accounting that every firm does within its various functions. Even if a firm has just two keywords that are being bid on, depending on the
attribution method chosen the budget allocation on the keywords will differ and hence, the bid
decision will change. This analogy of cost accounting is valid for most organizations. As we
show, with appropriate corrections to oft-used heuristics such as last-click and first-click
strategies, there can be significant improvement in ROI. The suggestions we provide based on
our policy simulation, such as using a combined weighted strategy, remain easy to implement but
have a significant upside potential in improving ROI. As firms increase their spending in search
campaigns, especially for large firms which spend more than $20 - $30 million annually, a 3.6%
increase in ROI can be substantial.

Another important contribution of our research is that we provide a methodology that can
easily be used to test the efficacies of different attribution strategies. Since search campaigns
tend to be very different across industry and product categories in terms of their impact on
customers’ decision processes, customers’ knowledge, purchase cycles and purchase funnels, etc.,
it is difficult to generalize which attribution strategy is the correct one to use in all situations.
Advertisers can experiment one strategy for a short period of time, then change the strategy and
use our model to tease apart the impact of attribution scheme on the revenue outcome and even
come up with better strategies as we did in our simulation exercise. A research such as this is
also very easy to conduct as all it requires is the change of attribution scheme that leads to
different bidding.

Our results also provide insights into the efficiency of the search campaign at the
keyword level under different attribution strategies. As we illustrate in section 5.2, some
keywords’ performance is shown to be better under the first-click strategy while other keywords’
performance is better under the last-click strategy. This allows an advertiser to identify important
keywords that act as originators of purchase funnel and those that act as convertors in the funnel.
Generally, we would expect the broad keywords to perform better under first-click strategy and
the narrow keywords to perform better the last-click strategy. However, if we find that a broad
keyword also performs very well under the last-click scheme, then this may suggest that the firm’s internal website is well designed (with its own search functionality within the website) to convert a customer who visits by using a broad keyword. On the other hand, a narrow keyword lagging expectation under the last-click scenario may indicate that the website is not optimally designed to convert potential customers with very specific need in mind. Finally, our model can be used for predictive purposes to quantify the impact of such design factors on revenue, cost-per-click, click-through rate, conversion rate, and the position of a paid search ad.

Our research is not without limitations. Given that the data we use are at the aggregate keyword level and not at the customer purchase funnel level (where we would also know the position of the keywords in the purchase funnel), we lose some relevant information that could be useful to optimize the attribution strategy or incorporate spillovers across keywords (e.g. Rutz and Bucklin 2011). While in our application, the purchase funnels mainly consist of a few touches, this can be a significant limitation in other applications with longer purchase funnels. Second, we do not have access to all data such as promotions at the firm’s website and other firm-level actions but use daily budget as an endogenous variable to reflect new product introduction, seasonal items, and website promotions. Having all firm-level data can help build more accurate models. Third, we represent search engine position decision as a function of firm’s bidding and quality score and abstract away any competitive effects. Thus, strategic aspects at the search engine level are not considered in our model although it could play an important role (e.g., Amaldoss et al. 2015, Desai et al. 2014). On the other hand, the simplicity of our model formulation does allow us to understand the impact of attribution strategies on other similar marketing instruments such as the ROI of real-time bidding display advertising.
References

Tables

Table 1 Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Daily average across the entire data window</th>
<th>Daily average under Last-Click Condition</th>
<th>Daily average under First-Click Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impression</td>
<td>84,788,062</td>
<td>471,045</td>
<td>432,771</td>
<td>521,096</td>
</tr>
<tr>
<td>Clicks</td>
<td>1,033,982</td>
<td>5,744</td>
<td>5,326</td>
<td>6,291</td>
</tr>
<tr>
<td>Checkout</td>
<td>1,727</td>
<td>10</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Checkout Revenue*</td>
<td>1,571,923</td>
<td>8,733</td>
<td>8,661</td>
<td>8,826</td>
</tr>
<tr>
<td>Cost</td>
<td>1,714,715</td>
<td>9,526</td>
<td>8,020</td>
<td>11,496</td>
</tr>
<tr>
<td>ROI (= Checkout Rev/Cost)</td>
<td>92%</td>
<td>92%</td>
<td>108%</td>
<td>77%</td>
</tr>
<tr>
<td>Average CPC</td>
<td>1.48</td>
<td>1.34</td>
<td>1.34</td>
<td>1.65</td>
</tr>
<tr>
<td>Average Position</td>
<td>2.26</td>
<td>2.43</td>
<td>2.43</td>
<td>2.06</td>
</tr>
<tr>
<td>Average Quality Score</td>
<td>5.43</td>
<td>5.46</td>
<td>5.46</td>
<td>5.39</td>
</tr>
<tr>
<td>Average Click-through Rate</td>
<td>1.22%</td>
<td>1.23%</td>
<td>1.23%</td>
<td>1.21%</td>
</tr>
<tr>
<td>Average Conversion Rate</td>
<td>0.17%</td>
<td>0.18%</td>
<td>0.18%</td>
<td>0.16%</td>
</tr>
</tbody>
</table>

* The revenue is disguised, and so the ROI metric is used for comparison across conditions.

Table 2 Endogenous and Exogenous Variables

<table>
<thead>
<tr>
<th>Endogenous Variables</th>
<th>Excluded Exogenous Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eqn 1 $\ln(\text{Impression}{it})$, $\text{CTR}{it}$, $\text{CONV}{it}$, $\ln(\text{Budget}{it})$</td>
<td>$\ln(\text{QS}{it})$, $\text{Google}{i}$, $\text{Brand}{it}$, $\text{Valentine}{it}$, Mother_{it}</td>
</tr>
<tr>
<td>Eqn 2 $\ln(\text{rpc}{i,t-1})$, $\ln(\text{Budget}{it})$</td>
<td>$\text{Specificity}{i}$, $\text{FC}{i}$, $\text{Valentine}{it}$, $\text{Mother}{it}$</td>
</tr>
<tr>
<td>Eqn 3 $\ln(\text{CPC}_{it})$</td>
<td>$\text{Specificity}{i}$, $\text{FC}{i}$</td>
</tr>
<tr>
<td>Eqn 4 $\ln(\text{Position}_{it})$</td>
<td>$\text{FC}{i}$, $\text{Google}{i}$</td>
</tr>
<tr>
<td>Eqn 5 $\ln(\text{Position}_{it})$</td>
<td>$\text{FC}{i}$, $\ln(\text{QS}{it})$, Google_{i}</td>
</tr>
</tbody>
</table>

Table 3 Coefficient Estimates from Revenue Model

<table>
<thead>
<tr>
<th></th>
<th>Estimates</th>
<th>Std. Error</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_0 Intercept</td>
<td>-6.615</td>
<td>1.460</td>
<td>***</td>
</tr>
<tr>
<td>α_1 $\ln(\text{Impression}_{it})$</td>
<td>0.342</td>
<td>0.040</td>
<td>***</td>
</tr>
<tr>
<td>α_2 CTR_{it}</td>
<td>0.095</td>
<td>0.012</td>
<td>***</td>
</tr>
<tr>
<td>α_3 CONV_{it}</td>
<td>0.983</td>
<td>0.242</td>
<td>***</td>
</tr>
<tr>
<td>α_4 Specificity_{i}</td>
<td>0.035</td>
<td>0.013</td>
<td>**</td>
</tr>
<tr>
<td>α_5 $\text{Sq(Specificity}_{i}$</td>
<td>0.003</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>α_6 FC_{i}</td>
<td>-0.158</td>
<td>0.036</td>
<td>***</td>
</tr>
<tr>
<td>α_7 $\text{FC}{i}$*$\text{Specificity}{i}$</td>
<td>-0.070</td>
<td>0.012</td>
<td>***</td>
</tr>
<tr>
<td>α_8 $\ln(\text{Budget}_{it})$</td>
<td>0.597</td>
<td>0.132</td>
<td>***</td>
</tr>
</tbody>
</table>

Significance codes: *** (p<0.001), ** (p<0.01), * (p<0.05), and . (p<0.1).
Table 4 Coefficient Estimates from Cost-per-click Model

<table>
<thead>
<tr>
<th>Estimates</th>
<th>Std. Error</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_0)</td>
<td>Intercept</td>
<td>-4.857</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>(\ln(rpc_{i,t-1}))</td>
<td>3.256</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>(\ln(Budget_t))</td>
<td>0.538</td>
</tr>
<tr>
<td>(\beta_3)</td>
<td>(\ln(QS_{it}))</td>
<td>-0.814</td>
</tr>
<tr>
<td>(\beta_4)</td>
<td>Google(_i)</td>
<td>-0.026</td>
</tr>
<tr>
<td>(\beta_5)</td>
<td>Brand(_i)</td>
<td>-2.991</td>
</tr>
</tbody>
</table>

Significance codes: *** (p< 0.001), ** (p< 0.01), * (p<0.05), and . (p< 0.1).

Table 5 Coefficient Estimates from Position Model

<table>
<thead>
<tr>
<th>Estimates</th>
<th>Std. Error</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_0)</td>
<td>Intercept</td>
<td>1.845</td>
</tr>
<tr>
<td>(\theta_1)</td>
<td>(\ln(CPC_{it}))</td>
<td>-0.587</td>
</tr>
<tr>
<td>(\theta_2)</td>
<td>(\ln(QS_{it}))</td>
<td>-0.385</td>
</tr>
<tr>
<td>(\theta_3)</td>
<td>Google(_i)</td>
<td>-0.445</td>
</tr>
<tr>
<td>(\theta_4)</td>
<td>Brand(_i)</td>
<td>-1.960</td>
</tr>
<tr>
<td>(\theta_5)</td>
<td>Valentine(_i)</td>
<td>0.100</td>
</tr>
<tr>
<td>(\theta_6)</td>
<td>Mother(_i)</td>
<td>0.024</td>
</tr>
</tbody>
</table>

Significance codes: *** (p< 0.001), ** (p< 0.01), * (p<0.05), and . (p< 0.1).

Table 6 Coefficient Estimates from Click-through Rate Model

<table>
<thead>
<tr>
<th>Estimates</th>
<th>Std. Error</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_0)</td>
<td>Intercept</td>
<td>-4.961</td>
</tr>
<tr>
<td>(\mu_1)</td>
<td>(\ln(Position_{it}))</td>
<td>-2.594</td>
</tr>
<tr>
<td>(\mu_2)</td>
<td>(\ln(QS_{it}))</td>
<td>1.685</td>
</tr>
<tr>
<td>(\mu_3)</td>
<td>Specificity(_i)</td>
<td>-0.202</td>
</tr>
<tr>
<td>(\mu_4)</td>
<td>Sq(Specificity(_i))</td>
<td>-0.044</td>
</tr>
<tr>
<td>(\mu_5)</td>
<td>Brand(_i)</td>
<td>-0.006</td>
</tr>
<tr>
<td>(\mu_6)</td>
<td>Valentine(_i)</td>
<td>0.651</td>
</tr>
<tr>
<td>(\mu_7)</td>
<td>Mother(_i)</td>
<td>-0.021</td>
</tr>
</tbody>
</table>

Significance codes: *** (p< 0.001), ** (p< 0.01), * (p<0.05), and . (p< 0.1).
Table 7 Coefficient Estimates from Conversion Rate Model

<table>
<thead>
<tr>
<th>ϕ_i</th>
<th>Estimates</th>
<th>Std. Error</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-4.578</td>
<td>0.010</td>
<td>***</td>
</tr>
<tr>
<td>$\ln(\text{Position}_i)$</td>
<td>0.003</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>Specificity$_i$</td>
<td>-0.003</td>
<td>0.002</td>
<td>.</td>
</tr>
<tr>
<td>Sq(Specificity$_i$)</td>
<td>0.000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Brand$_i$</td>
<td>0.315</td>
<td>0.017</td>
<td>***</td>
</tr>
<tr>
<td>Valentine$_i$</td>
<td>0.019</td>
<td>0.005</td>
<td>***</td>
</tr>
<tr>
<td>Mother$_i$</td>
<td>0.020</td>
<td>0.004</td>
<td>***</td>
</tr>
</tbody>
</table>

Significance codes: *** (p<0.001), ** (p<0.01), * (p<0.05), and . (p<0.1).

Table 8: Variance-Covariance Matrix

<table>
<thead>
<tr>
<th>Eqn(1)</th>
<th>Eqn(2)</th>
<th>Eqn(3)</th>
<th>Eqn(4)</th>
<th>Eqn(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eqn(1)</td>
<td>7.437</td>
<td>0.383</td>
<td>0.015</td>
<td>0.026</td>
</tr>
<tr>
<td>Eqn(2)</td>
<td>0.383</td>
<td>5.265</td>
<td>0.094</td>
<td>-0.415</td>
</tr>
<tr>
<td>Eqn(3)</td>
<td>0.015</td>
<td>0.094</td>
<td>0.224</td>
<td>0.305</td>
</tr>
<tr>
<td>Eqn(4)</td>
<td>0.026</td>
<td>-0.415</td>
<td>0.305</td>
<td>2.184</td>
</tr>
<tr>
<td>Eqn(5)</td>
<td>-0.797</td>
<td>-0.016</td>
<td>0.000</td>
<td>-0.004</td>
</tr>
</tbody>
</table>

Table 9: Changes for Example Keywords When Switching from the Last-Click to the First-Click

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Specificity</th>
<th>Δ Daily Revenue</th>
<th>Δ CPC</th>
<th>Δ Position</th>
<th>Δ CTR</th>
<th>Δ Conv. Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>men's rings</td>
<td>1</td>
<td>2.639</td>
<td>0.027</td>
<td>-0.313</td>
<td>0.116%</td>
<td>0.000%</td>
</tr>
<tr>
<td>ruby jewelry</td>
<td>1</td>
<td>4.457</td>
<td>0.321</td>
<td>-0.367</td>
<td>0.745%</td>
<td>0.000%</td>
</tr>
<tr>
<td>sapphire jewelry</td>
<td>1</td>
<td>3.692</td>
<td>0.539</td>
<td>-0.358</td>
<td>0.431%</td>
<td>-0.001%</td>
</tr>
<tr>
<td>mothers ring</td>
<td>2</td>
<td>1.214</td>
<td>0.371</td>
<td>-0.295</td>
<td>0.224%</td>
<td>-0.002%</td>
</tr>
<tr>
<td>onyx ring</td>
<td>2</td>
<td>8.615</td>
<td>1.796</td>
<td>-1.321</td>
<td>2.433%</td>
<td>-0.002%</td>
</tr>
<tr>
<td>promise rings for him</td>
<td>2</td>
<td>2.381</td>
<td>-0.291</td>
<td>0.447</td>
<td>0.470%</td>
<td>0.001%</td>
</tr>
<tr>
<td>black onyx rings</td>
<td>3</td>
<td>-2.633</td>
<td>-0.177</td>
<td>-0.305</td>
<td>1.794%</td>
<td>0.000%</td>
</tr>
<tr>
<td>mothers stackable rings</td>
<td>3</td>
<td>-1.688</td>
<td>0.133</td>
<td>-0.185</td>
<td>1.045%</td>
<td>-0.001%</td>
</tr>
<tr>
<td>ruby engagement rings</td>
<td>3</td>
<td>-1.379</td>
<td>0.009</td>
<td>-0.106</td>
<td>-3.212%</td>
<td>0.001%</td>
</tr>
<tr>
<td>black diamond engagement rings</td>
<td>4</td>
<td>-4.596</td>
<td>0.230</td>
<td>-0.140</td>
<td>0.308%</td>
<td>0.002%</td>
</tr>
<tr>
<td>black onyx sterling silver ring</td>
<td>4</td>
<td>-5.344</td>
<td>0.454</td>
<td>0.266</td>
<td>-0.611%</td>
<td>0.001%</td>
</tr>
<tr>
<td>engagement rings blue sapphire</td>
<td>4</td>
<td>-7.271</td>
<td>1.466</td>
<td>0.312</td>
<td>-0.298%</td>
<td>0.001%</td>
</tr>
<tr>
<td>princess cut black diamond engagement rings</td>
<td>5</td>
<td>-0.453</td>
<td>-0.617</td>
<td>-0.113</td>
<td>0.957%</td>
<td>0.000%</td>
</tr>
</tbody>
</table>
Figures

Figure 1 Generating Visits using Keywords in the Purchase Funnel

Figure 2 Institutional Context
Figure 3 The Role of the Attribution Strategy

(a) Last-Click Attribution

(b) First-Click Attribution
Figure 4 Daily Budget, Cost, and Revenue

Figure 5 Revenue of Using Simulated Strategies - Compared with the Revenue of Using Last Click Strategy