Regulatory Effects on Short-Term Interest Rates

Angelo Ranaldo

University of St. Gallen

Patrick Schaffner

Bank of England, University of St. Gallen

Michalis Vasio

Norges Bank Investment Management

December 29, 2019

Abstract

We analyse the effects of EMIR and Basel III regulations on short-term interest rates. EMIR requires central clearing houses (CCP) to continually acquire safe assets, thus expanding the lending supply of repurchase agreements (repo). Basel III, in contrast, disincentivises the borrowing demand by tightening banks’ balance sheet constraints. Using unique datasets of repo transactions and CCP activity, we find compelling evidence for both supply and demand channels. The overall effects are decreasing short-term rates and increasing market imbalances in various forms, all of which entail unintended consequences originated from the new regulatory framework.

We are grateful for valuable comments from Jonathan Acosta-Smith, Christoph Aymanns, Alexander Bechtel, Evangelos Benos, Giovanni Calice, Pavel Chichkanov, Sean McGrath, David Murphy, Gerardo Ferrara, Mariam Harfush-Pardo, Pedro Gurrola-Perez, Russell Jackson, Linda Kirschner, Philipp Lentner, Katia Pascarella, Loriana Pelizzon, Dagfinn Rime, Gary Robinson, Pablo Rovira Kaltwasser, Glenn Schepens, Guillaume Vuillemey and participants of the BCBS/CEPR Workshop on the Impact of Regulation, CARF, Central Bank Workshop on Microstructure of Financial Markets, ECB Money Market Workshop, ESSEC/Banque de France Workshop on OTC Markets, SAFE Market Microstructure Conference, SPI Research Days, and seminars at the Bank of England, Bank of Italy, BI (Oslo), ESCP, LUISS, and the Swiss National Bank. We also acknowledge the support of the Bank of England and of the Swiss Institute of Banking and Finance. The views expressed in this paper are those of the authors, and not necessarily those of the Bank of England or Norges Bank Investment Management, and Michalis Vasio has worked on this paper while he was at the Bank of England.
1 Introduction

The market for repurchase agreements (“repo”) has become the main source of funding liquidity that allows financial market participants to manage their inventory of cash and securities. In addition to dealers and banks, the new regulation governing the well-functioning of the over-the-counter (OTC) derivatives market made central counterparties (CCPs) major participants in the European repo market. In the words of Benoît Cœuré (2019) “CCPs act as major repo counterparties when reinvesting the large amounts of collateral they collect. Disruptions affecting, or caused by, a CCP can have ripple effects through the euro repo market, which may affect the conduct of monetary policy.”

In addition to these structural changes, some puzzling patterns emerged in money markets. As illustrated in Figure 1, since 2015 European repo rates dropped below the central bank deposit rate exhibiting wider cross-sectional dispersion and marked declines on the reporting days of the Basel III leverage ratio (BIS, 2017). These issues have gained attention from regulators and practitioners raising several compelling questions: How does the new regulatory framework in banking and financial market infrastructures affect the repo market? Has it created unintended consequences by bringing down and spreading out short-term interest rates? And if it does, why?

To address these important questions, we analyse unique regulatory data from the investment activity of UK CCPs together with a comprehensive dataset of European repos. We identify two key regulatory effects, one affecting the repo supply (or reverse repos) and the other affecting the repo demand. On the supply side, the European market infrastructure regulation (EMIR) requires European CCPs to turn their unsecured cash holdings from the collection of margins into highly liquid securities. In practice, CCPs obtain these securities by entering into reverse repos (i.e., they lend cash against collateral). We find that the repo supply enforced by this regulation puts significant downward pressure on short-term interest rates. On the demand side, the Basel III leverage ratio entails that repos expand the balance sheet of financial intermediaries, whereas reverse repos do not. We find that CCPs’ downward pressure on short-term rates strengthens during the regulatory reporting dates when the lever-

1A repo is a collateralised loan to borrow cash based on a simultaneous sale and forward agreement to repurchase securities at the maturity date. Throughout this paper, we refer to borrowing and lending repo cash.
age ratio bites banks’ repo cash borrowing demand the most. To shed light on the transmission mechanism, we show that those banks borrowing from CCPs offload their liquidity surpluses by lending more in the interbank market.

A better understanding of how new regulations affect short-term interest rates is relevant for regulators who have imposed a number of regulatory constraints on banks with unknown effects and interactions (e.g. Haldane, 2017; Coeuré, 2017). Whilst new prudential policies strengthen financial stability, regulations, such as the Basel III leverage ratio, might have created unintended effects, such as disincentivising repo intermediation (Duffie, 2016) inducing collateral scarcity (Coeuré, 2012) and window-dressing at the end of reporting periods (BIS, 2017 pp. 20–28). Furthermore, the Dodd-Frank Act and EMIR implementation in U.S. and Europe, respectively, have made central clearing mandatory for a large number of interest rate swaps and credit default swaps (CDS), thus making CCPs large actors in financial markets. Understanding these issues is crucial for phasing-in and redesigning the regulatory framework aiming at reaching the desired level of market efficiency and financial stability (Duffie, 2018).

Our study is also relevant to central banks as many monetary policies are implemented through short-term rates.

Our first contribution is to show the causal effect of the new regulation governing clearing infrastructures on the supply side of the repo market. The main function of CCPs is to reduce counterparty risk by collecting initial margin and default fund contributions. As a result, CCPs hold vast amounts of cash. For instance, the total cash held daily by the top 10 European CCPs in 2016 exceeded EUR140 billions. EMIR states that at least 95% of any cash position that remains in a CCP’s margin accounts or default fund overnight must be invested into government bonds or reverse repos or deposited with a central bank. This means that clearing houses are required to reinvest cash in a given set of highly safe and liquid assets available on the market on a daily basis. In practice, the CCPs in our sample comply to the EMIR requirement by

2For instance, a repo causes almost no increase in the risk of the dealer’s balance sheet but the leverage rule requires significantly more capital creating a “debt overhang” problem in the sense that dealer’s creditors benefit from the improved safety of their claims at shareholders’ expense (Duffie, 2017).

3For example, the BIS (2017, p. 22) writes that “regulation calculated on the basis of the banks’ balance sheet size […] has had a pronounced impact on repo market activity.” Further, it observes that differences in the behaviour of banks across jurisdictions with different balance sheet constraints support this hypothesis. In particular, it shows that banks not subject to US or UK leverage ratio regulation decreased their repo trading volumes much less than other banks. The ECB (Grill et al., 2017, p. 161) repeats concerns raised by the industry that “regulatory reforms have significantly reduced the willingness of banks to provide repo services and contributed to volatility and market dislocations around the balance sheet reporting dates.”

4These estimates are based on the CPMI-IOSCO Public Quantitative Disclosures by European CCPs at the end of the first quarter of 2016.

5See Articles 44-45 of EMIR (EC, 2013, p. 63). For further details, see Section 2.1.
lending repo cash for high quality collateral in the OTC bilateral segment of the repo market. The investment of European CCPs in the reverse repo market is substantial. For instance, out of the EUR140 billion cash held by the top 10 European CCPs in 2016, about EUR60 billion were invested daily in reverse repos (according to CPMI-IOSCO disclosures). This represents a sizeable amount compared to the total daily borrowed volume of about EUR300 billion in the Euro interbank repo market.

To test the supply hypothesis, we perform a series of panel regressions with fixed-effects for the country of the collateral asset. Daily excess rates, defined as the difference between the interbank repo rate and the central bank deposit rate, are regressed on aggregate CCPs’ investment on reverse repos. In addition to be determined by regulation and by the amount of cash accumulated on CCPs’ margin accounts, notice that CCPs’ reverse repos are conducted in the OTC segment while we analyse the impact on interbank rates. Thus, it is reasonable to assume that the CCP investment is exogenous to the interbank repo market. We control for other potential factors including interbank order flow (i.e., borrower-initiated minus lender-initiated repos) that should determine price formation according to microstructure theory, risk variables accounting for possible margin procyclicality, CCPs’ purchases in the cash bond market, which can induce indirect effects on short-term rates such as “specialness,” and, more importantly, Quantitative Easing (QE) effects that can create collateral scarcity and excess liquidity. The main finding is that to conform to new regulation, CCPs’ repo cash lending exerts a pervasive and systematic downward pressure on short-term rates, thus supporting the supply hypothesis. We estimate that about 5% of day-to-day variation in repo rates is driven by CCPs’ repo cash lending.

Our second contribution is to show how the new regulation on the clearing infrastructure also affects the demand side of repo markets. To do this, we exploit the interaction between EMIR and Basel III regulations. The main idea is to analyse the impact of the exogenous variation of CCPs’ cash supply on the downward-sloping demand curve for repos during the Basel III leverage ratio reporting periods. Note that only repo contracts and not reverse repos expand bank’s balance sheets.\(^6\) Hence, banks are less inclined to demand repos whereas repo

\(^6\)The repo cash enters on the asset side and the repo debt on the liability side of the repo borrower’s balance sheet while the pledged asset remains on its asset side. Regarding reverse repos, the lent cash leaving the lender’s balance sheet equals the claim on the repo counterparty remaining in the balance sheet. Collateral assets are excluded because they are temporary purchases. See Section 2.2 for details.
supply remains essentially unaffected.\footnote{Note that the leverage ratio is an unweighted risk measure, suggesting that it is the balance sheet size rather than the asset quality that matters. Also, the tenors (shorter than the thirty-day LCR cut-off time) and collateral assets (all are Level 1 High Quality Liquid Assets (HQLA)) analysed in this paper are unaffected by other regulations such as the Liquidity Coverage Ratio (LCR) (cf. \cite{BIS} pp.27–28), the Net Stable Funding Ratio (NSFR) and Risk Weighted Assets (RWA).}

To test the demand effect, we design a difference-in-differences specification in the spirit of Du, Tepper, and Verdelhan (2018). In our setting, repo contracts expiring after (before) the quarter-end represent the “treated group” (“control group”) as they are (not) subject to the leverage ratio requirement and thus generate higher capital costs. We then test whether the negative effect of the CCP activity on short-term rates is stronger for repo contracts that expire \textit{after} the quarter-end reporting date. The main finding is that the negative CCP impact on short-term rates increases during quarterly reporting dates, that is, when the Basel III leverage ratio imposes balance sheet constraints on banks demanding repos. This evidence suggests that the joint regulatory effects of EMIR and Basel III further decrease short-term rates, thus supporting the demand hypothesis.

In the remainder of our paper, we delve into the differential effect and the transmission mechanism of regulation. To do this, we analyse which repos and banks are affected the most. First, we carry out panel regression analysis on yield differentials between repos with different collateral. We find that the purchase of collateral assets by CCPs widens yield differentials and that the repo contracts with the lowest rate are (negatively) affected the most. From the perspective of the safe asset literature, this finding suggests that regulation chiefly affects repos bearing the largest convenience premia, i.e. offering more safety or liquidity benefits. Second, we perform panel regressions at the bank level. By entering a bilateral (OTC) repo contract with a CCP, a bank suffers from a cash surplus, a shortage of HQLA assets, and an expansion of the balance sheet. We find that the banks who are the borrowing counterparties of the CCPs in our sample (i.e., their investment counterparties) tend to offset any consequent cash surpluses and asset shortages by lending more and borrow less in the interbank market.

We contribute to at least three strands of the literature: First, to the growing literature on intermediary asset pricing (e.g., \cite{He, Krishnamurthy} 2013; \cite{Adrian, Etula, Muir} 2014; \cite{He, Kelly, Manela} 2017). We do so by showing that regulations have created new and important market participants, i.e. clearing houses, that affect how financial intermediaries price and trade.
short-term rates.

Second, we contribute to the literature on repos, which represent an important category of safe assets (Gorton, 2017). Only few papers analyse the regulatory effects on repo rates. Our study is the first to highlight how the new mandatory framework including EMIR contributes to dragging down repo rates (below central bank deposit rates) and widening their dispersion. The regulatory effects uncovered in this paper represent a new explanation for low and dispersed short-term rates that complements narratives on collateral scarcity and QE impacts, as we demonstrate empirically.

Third, we contribute to the nascent literature on central clearing that is mostly devoted to CDS pricing in the post-crisis regulatory regime. The novelty of our study is to show that clearing houses on their own have become important players with “preferred [regulatory] habitats” for safe and liquid assets affecting intermediaries’ behaviours.

The remainder of the paper is organized as follows: Section 2 introduces the regulatory reforms. Section 3 presents our datasets. Section 4 and Section 5 analyse the supply and demand hypothesis, respectively. Section 6 provides additional analyses. Section 7 concludes.

2 Regulatory Context

The effects we analyse are relevant to two pieces of European regulation: the EMIR and the Basel III leverage ratio. Below we provide an overview of them.

8Several recent papers study regulatory effects on market liquidity (e.g., Adrian, Boyarchenko, & Shachar, 2017; Trebbi & Xiao, 2017; Bicu, Chen, & Elliot, 2017) and on risk-taking (e.g., Acosta-Smith, Grill, & Lang, 2018) and arbitrage (Du et al., 2018).

9Several recent papers analyse repo markets in the United States (e.g., Copeland, Martin, & Walker, 2014; Gorton & Metrick, 2012; Krishnamurthy, Nagel, & Orlov, 2014) and in Europe (e.g., Mancini, Ranaldo, & Wrampelmeyer, 2016; Boissel, Derrien, Ors, & Thesmar, 2017).

10For instance, Munyan (2015) documents calendar effects during reporting periods. Studying GILT repos, Kotidis and van Horen (2018) find that banks with more binding leverage ratio offer their smaller clients lower rates and reduced repo volume.

11Some recent papers study the effects on unconventional monetary policies on repo markets (e.g., Arrata, Nguyen, Rahmouni-Rousseau, & Vari, in press; Corradin & Maddaloni, in press; Pelizzon, Subrahmanyam, Tomio, & Uno, 2018).

12See, for instance, Arora, Gandhi, and Longstaff (2012); Loon and Zhong (2014); Duffie, Scheicher, and Vuilleney (2015); Du, Gadgil, Gordy, and Vega (2016).

13The preferred habitat hypothesis developed by Modigliani and Sutch (1966) has been applied to money markets (e.g., Park & Reinganum, 1986; Ogden, 1987; Musto, 1997). By forcing CCPs to invest in given assets, we determine a source of preferred habitat affecting money market rates.
2.1 European Market Infrastructure Regulation

In July 2012 the European Union issued EMIR, which lays down the regulatory framework for OTC derivatives, CCPs, and trade repositories. Among other things, it introduced clearing requirements for OTC derivatives and uniform standards for the operation of European CCPs. Of particular interest are the requirements concerning CCP’s handling of the cash collected daily as part of their risk management procedures in the form of initial margin and default fund contributions. They require CCPs to hold at most 5% on average on unsecured deposits, which protects them against counterparty risk. In practice, complying with this regulation requires CCPs to invest their cash daily into reverse repos, government bonds, and when available, central bank deposits.\footnote{See the Article 47 of EMIR and Commission Delegated Regulation (EU) No 153/2013 EC 2013, p. 63, Article 45. The latter says that “where cash is maintained overnight […] not less than 95% of such cash, calculated over an average period of one calendar month, shall be deposited through arrangements that ensure the collateralisation of the cash with highly liquid financial instruments […].”}

CCPs collect initial margin daily (or sometimes intraday) as a protection against counterparty risk. Initial margin calculations are risk-based reflecting the size and the riskiness of clearing members’ portfolios. Data from public disclosures indicate that about 40% of the initial margin collected by the top 10 European CCPs in 2016 was in cash. This share remained essentially constant from 2016 to 2019 suggesting that unconventional policies, including the QE and central bank liquidity provisions, have not led banks to pledge more cash as collateral. The cash that needs to be invested daily by CCPs is considerable. For instance, the total cash held daily by the top 10 European CCPs in 2016 exceeded EUR140 billion.\footnote{The numbers in this paragraph are based on the CPMI-IOSCO Public Quantitative Disclosures by European CCPs at the end of the first quarter of 2016. See \url{http://www.eachccp.eu/cpmi-iosco-public-quantitative-disclosure/}}

The enormous amount of cash held by CCPs reflects the sheer size of the markets they clear and the mandatory central clearing of standardised OTC derivatives first introduced in the US and EU in 2013 and 2016, respectively. At the end of 2016, the outstanding notional in OTC derivatives market amounted to $544 trillion, of which 61% were centrally cleared for interest rate derivatives, 28% for CDS, and minuscule for FX, commodity and equity derivatives (e.g., FSB 2017a, 2017b). As central clearing mandates are phased-in, the proportion of central clearing segment, and consequently the size of CCP investment, is expected to continue to grow.

Our main interest lies in the CCP investment in reverse repos. We consider this investment as ‘mechanical’ and exogenous to the repo market since it is driven by the need for regulatory compliance with EMIR. Note that the size of CCP investment is solely driven by the margin
posted by clearing members. Margin tends to increase with portfolio volatility and the net position of a clearing member against the CCP. As discussed earlier, the composition of margin has been fairly stable between 2016 and 2019, with cash accounting for about 40% with the rest being securities. Furthermore, clearing members have no incentive to deposit excess cash with the CCP, as there is typically a charge, that is the spread on the overnight benchmark index, e.g., the EONIA for Euro-denominated cash.

The CCPs have the option to substitute reverse repos with other safe assets, for example government bonds. However, we think it an unlike option for two reasons. First, purchasing individual securities (specific ISIN) from the illiquid bond markets is costlier than obtaining general collateral (GC) in a reverse repo. Second, EMIR (EC 2013, p. 74) requires that the average time-to-maturity of CCP investment portfolios does not exceed two years, an important constraint for purchasing individual bonds. Nonetheless, to err on the side of caution, all our regressions include the CCP bond investments as a control variable.

Another option for CCPs is to deposit cash at central banks. However, this option is not always available, while when it exists it can come with strict requirements. This is particularly the case with the CCPs in our sample. The Sterling Monetary Framework is built around using a reserves averaging system. Participants set a target for the average reserves they will hold over the next maintenance period. Holding average reserves outside a narrow range around this target attracts a charge (Bank of England 2015, pp. 4-5). Although the reserves averaging scheme was suspended for banks in 2009, it still applies to UK CCPs that must hold daily average reserves between 99% and 101% of the said target. Missing the target gives rise to a hefty charge of 200 basis points (Bank of England 2019, p. 7). Given the volatile nature of initial margin and the cash held by CCPs, the use of central banks deposits by UK CCPs as a mean to comply to the EMIR requirement is rather restrictive.

Hence, in practice the CCPs in our sample comply with the EMIR by investing in the reverse repo market. More generally, in Europe the proportion of CCP investment in reverse repos varies across CCPs.16 Even so, the aggregate CCP investment in reverse repos is substantial. Public data from the CPMI-IOSCO quantitative disclosures of the top 10 EU CCPs in the first quarter of 2016 suggest that their aggregate daily investment in reverse repos was in excess of EUR60 billion or about 45% of the cash held by these CCPs.

16For example, EuroCCP (2018) reports that 100% of cash received from clearing members is deposited with commercial banks over reverse repos. Conversely, Eurex Clearing deposits the vast majority of its cash with the central bank.
A similar picture, with some variations to reflect regulatory differences, emerges in other jurisdictions. For example, the 2016Q1 CPMI-IOSCO public disclosures suggest that the cash deposits of the major US CCPs were almost entirely held at commercial banks (at unsecured deposits or reverse repos). In more recent years (2019) the picture is mixed. The ICE Clear US, the largest CCP in the CDS market, invests its cash mainly (about 70%) in the reverse repo market and the rest in domestic government bonds. The CME Group, the Options Clearing Corporation (OCC) and the DTCC, hold about 50-60% of their cash at central bank deposits, and the rest at commercial banks (with about 20% of total cash invested in reverse repos).

2.2 Basel III

The Basel III framework, announced in 2010, was developed by the Basel Committee on Banking Supervision (BCBS) aiming at strengthening the regulatory framework for banks. Capital requirements are central to Basel III. In particular, the leverage ratio (i.e., the ratio of Tier 1 capital to total exposures) was introduced as a non-risk weighted capital ratio in an attempt to limit the overly building-up of leverage in banks’ balance sheet.

The BCBS required banks to report their leverage ratio to national supervisors from 1 January 2013, followed by a public disclosure requirement from 1 January 2015. However, the leverage ratio was only scheduled to become mandatory with a minimum ratio of 3% in January 2018. The BCBS reporting requirement has been implemented differently across jurisdictions. In the European Union, banks report their leverage ratio based on quarter-end figures. Other jurisdictions require leverage ratio reporting based on averaging. For example, in the UK, from January 2016 onwards, the seven larger UK banks were required to report quarterly the average of on-balance sheet assets on the last day of each month during the reference quarter. From January 2017 onwards, this rule changed to daily averaging.\[17\]

The leverage ratio reporting requirements brought about the practice of window-dressing, i.e., the adjustment of banks’ balance sheets around the regulatory reporting dates, mainly at year-and quarter-ends [BIS 2018]. We exploit this practice below to identify banks’ balance sheet constraints (i.e. demand effects).

In Europe, the treatment of repo market exposures in the leverage ratio calculation is asym-
metric. As illustrated in Figure 2, repo borrowers retain the collateral on their balance sheet, as they are already committed to repurchasing the asset in the future, and are therefore exposed to the risk of the collateral. As a result, the cash borrowed and entered on the asset side is balanced by an equally sized position on the liability side. Hence, a repo transaction expands the balance sheet thus reducing the leverage ratio. Conversely, reverse repos do not enter the leverage ratio calculation because the buyer is not exposed to the risk of collateral (except in the case of a default). Consequently, the collateral is not added as an asset in the bank’s balance sheet, while the cash received is removed from the asset side and replaced by a repo loan receivable.

As a result, banks’ intermediation involving repo demand (as opposed to repo supply, or reverse repos) is constrained by the leverage ratio (see Domanski, Gambacorta, and Picillo (2015) and Duffie (2016)). This applies in particular to global systemically important banks (G-SIB) that receive a capital surcharge in addition to the minimum leverage ratio. We expect the impact of the leverage ratio in the repo market to grow around the reporting end-of-quarter dates (Munyan (2015)), a manifestation of the decreasing demand for repos when the leverage ratio bites banks’ balance sheet the most.

3 Data

Our research relies on two main datasets. The first captures repo rates and volumes in the interbank Euro and Sterling repo market. The second represents clearing house infrastructure. The intersection of both datasets defines our sample period, starting on 4 November 2013 and ending on 29 December 2017 (i.e., a total of 1065 business days).

3.1 Repo Interbank Market

Repos are the most used contracts in the interbank credit market (ECB, 2015, p. 4). Our repo dataset consists of the near-total universe of all electronically traded repo transactions in Euro and Sterling. It is obtained from the three most important repo trading platforms in Europe: BrokerTec, Eurex Repo, and MTS Repo. Every transaction includes the following information: the repo rate; the currency; the cash amount; the trade-, purchase-, and repurchase
day; the collateral’s ISIN or country of origin; whether the repo was initiated by the cash borrower or lender; identifier of parties involved in a contract; and whether the repo is cleared by a CCP. We removed by hand 12 observations with obvious faulty data.

Table 1 shows a breakdown of the dataset by trading venue, clearing, currency, the collateral’s country of origin (the first two letters of ISIN) and maturity. Two remarks are in order here. First, volumes in Sterling have been converted to Euros, at the exchange rate of 1.12 EUR/GBP (only for the purpose of this table). Second, a repo is collateralised with GB collateral if and only if it is denominated in Sterling. Very few transactions violated this rule and have been discarded to simplify the analysis. In contrast, the Euro repo market collateral is quite diverse since the majority of collateral are Euro Area government bonds.

The table reveals that the vast majority of repos in our sample are centrally cleared with a one-day maturity. As a CCP assumes all counterparty credit risk, these trading venues are able to provide fully anonymous repo trading. This makes the electronically traded repo market an ideal research ground for short-term interest rates as it naturally excludes many confounding factors. For example, every trader faces the same counterparty credit risk as exposure is only to the CCP. Similarly, relationship trading and asymmetric information issues (e.g., about counterparty credit risk) are not important as all parties see the same anonymised central limit order book and cannot select specific counterparties.

After grouping repo transactions by tenor and collateral country, we focus on the most liquid groups in the interbank market. This produces six countries and four tenors (ON, TN, SN, S1W). Three country-tenor combinations needed to be removed as they are very infrequently traded, and hence introduce a lot of missing values in our time series. The resulting panel consists of 21 segments, of which 17 (4) have a one-day (one-week) tenor. As the composition of CCP investment positions is confidential, we cannot disclose which countries were included.

For every segment, we compute daily volume-weighted average repo rates and “aggressive” (i.e., by means of market orders) borrowing and lending volumes. The difference between aggressive borrowing and lending volumes defines the order flow.

\[\text{Order Flow} = \text{Aggressive Borrowing} - \text{Aggressive Lending}\]

A repo tenor consists of two parts. The first denotes the forward period between trade and settlement (O=Overnight, T=Tomorrow, S=Spot (2 days)), whereas the second denotes the period between settlement and maturity (N=next (1 day), 1W (5 business days)).

We are unable to measure liquidity provision using (non-aggressive) limit orders, as our dataset contains no order book.
Figure 1 displays the evolution of European repo rates. Three facts are worth noting: First, the repo market is characterized by two regimes. While in the first part of the sample period repo rates tend to follow the respective central bank deposit rate, in the second part they trade below those rates. Second, the cross-sectional dispersion of Euro repo rates has increased significantly in recent years. Higher quality collateral, such as German or French government bonds, exhibits much lower rates than relatively less safe one. Third, strong seasonalities are evident at the month-end (quarter-end) and entail lower rates and larger rate dispersion.

The first pattern, i.e. interbank repo rates trading below the central bank deposit rate, may seem puzzling as banks could just borrow cash in the repo market and then deposit it with the respective central bank to make a safe profit. A sufficient quantity of this near-arbitrage trading strategy would keep interbank rates strictly tied to the central bank deposit rate. The second pattern indicating wider cross-sectional dispersion of repo rates suggests different "convenience yields" (Krishnamurthy & Vissing-Jorgensen, 2012) embedded in repos and it can lead to passthrough inefficiency of monetary policies (Duffie & Krishnamurthy, 2016a, p.1). The third (seasonal) patterns coincide with regulatory reporting periods. However, how exactly regulations affect repo rates is an open question, which we analyse in the remainder of this paper.

In the remainder of this paper, we use the spread between repo rates and the central bank deposit rate (i.e., the ECB and the Bank of England deposit rates for Euro and Sterling repos, respectively) as the main dependent variable. We do so for two reasons. First, we observe that repo rates exhibit some degree of persistence and trend. Taking the spread over the deposit rate ensures stationarity. Second, the spread has an economically meaningful interpretation measuring how far the cost of private liquidity (represented by repos) is from the public liquidity rate (represented by the central bank deposit rate). In a stable monetary regime, they should converge. The Levin-Lin-Chu (LLC) test for panel data and the Augmented-Dickey-Fuller (ADF) test for univariate data strongly reject unit roots at the 1% significance level for both repo spreads to deposit rates and for interbank order flows.

20 This can be considered near-arbitrage rather than pure arbitrage as a bank needs to hold and pledge collateral to enter the repo position.
3.2 CCP Investments

Our analysis uses daily investments from EMIR-regulated clearing infrastructures as reported to the Bank of England between November 2013 and December 2017. Although our quantities are representative of the UK CCP market, confidentiality reasons prevent us from disclosing the clearing houses in our analysis. Nor are we able to divulge whether their investment activities stem merely from some or rather from all of their clearing services.

The data contain the reverse repo and bond purchase volumes that the supervised clearing houses settle every day to comply with the EMIR rule (see Section 2.1). These volumes are split by the collateral’s country of origin. Although they are very granular, these reports do not distinguish between tenors. Hence, we use the same volumes across all tenors of a given country in the panel cross-section.

To protect the confidentiality of this dataset, we standardise the time series by subtracting the mean and by dividing by the standard deviation of the total reverse repo lending (bond purchase) volume across countries. The units of reverse repo (bonds) investments are therefore standard deviations of total reverse repo (bonds) investments. This holds the relative sizes between countries constant and does not change the sign or significance of the regression estimates presented below. It does, however, allow us to show the economic significance of an hypothetical investment volume without disclosing its actual size.

Importantly, these reverse repo loans are conducted OTC and not in the repo interbank market itself. However, most counterparties at the same time participate in the interbank market. This is especially relevant for identifying the effects of balance sheet constraints. In the absence of multilateral netting mechanisms, which exist in the centrally cleared interbank market, and with no room for bilateral netting because CCPs almost exclusively lend, these reverse repo investments must end up on the counterparties’ balance sheets and lower their leverage ratios. Hence, this setting enables us to establish the natural transmission from regulation onto interbank rates through OTC intermediation.

The LLC test rejects a unit-root for CCPs’ reverse repo investments, although we find that repo investments with one particular country’s collateral are only weakly stationary. A removal of this country leads to rejecting of a unit-root at the 1% significance level. On the other hand, a unit-root in CCPs’ bond investments cannot be rejected, likely due to a some discrete jumps in investment volumes. We do appropriate robustness checks in Section 6.3 to verify that inclusion of this country and the bond investments control variable does not lead to spurious correlations.
in our results. We find that, if anything, inclusion works against our results.

3.3 Other Data

In addition to repo market and CCP data, we consider foreign exchange markets, general volatility, as well as quantitative easing. More specifically, we add the covered interest rate parity basis (CIP), the Euro 50 STOXX volatility index (VSTOXX), and the share of purchase-eligible government debt bought through the public sector purchasing programme (PSPP) as controls to our regressions.

The CIP basis is given by

\[
CIP_{i,t} = r_{t,t+n(i)}^{USD} - r_{t,t+n(i)}^{ccy(i)} + \frac{252}{n(i)} \left(s_{t,t+n(i)}^{USD,ccy(i)} - f_{t,t+n(i)}^{USD,ccy(i)} \right)
\]

where \(t\) denotes the day and \(i\) denotes the panel segment. \(n(i)\) equals the tenor of the repo segment in days (i.e., either 1 or 5), whereas \(ccy(i)\) denotes its currency (i.e., either EUR or GBP). Variable \(r\) denotes the unsecured LIBOR interest rate (in logs), which were downloaded from the Federal Reserve Economic Data (FRED) website.\(^{21}\) Variables \(s\) and \(f\) denote the spot and forward exchange rates (in logs) between \(USD\) and \(ccy(i)\), given in units of \(ccy(i)\) per USD. The spot and forward rates were downloaded from Bloomberg.

We include the CIP basis as a control because interest rates and FX markets are closely interrelated. Depending upon exchange rates, a bank facing margin call might find it more worthwhile to execute a carry-trade, to lend in the foreign currency’s repo market to obtain collateral and to deliver said collateral to satisfy the margin call rather than to simply deliver domestic collateral already in its possession. Hence, FX rates influence which collateral is cheapest-to-deliver and therefore affect repo demand and supply. Furthermore, CIP arbitrageurs need to borrow and lend cash to create synthetic interest rates. For CIP violations at the short end of the yield curve, one way to eliminate credit risk and the dwindling liquidity associated with Libor-based CIP is to use lending and borrowing rates from the repo markets (Du et al., 2018, p. 930). Hence, short-term CIP arbitraging affects repo demand and supply. We control for the CIP basis as it exhibits profound seasonalities around quarter-ends when leverage ratios must be reported (Du et al., 2018, p. 940).

Furthermore, we control for overall financial markets volatility and margin procyclicity

\(^{21}\)https://fred.stlouisfed.org/
by including the VSTOXX measuring the EURO STOXX 50 implied volatility index.\footnote{The VSTOXX is similar to CBOE VIX and the data are accessible in Bloomberg. Using VIX instead of VSTOXX, we obtain similar results.} Being an important determinant of how much margin must be deposited at CCPs for a given trade, volatility can influence how much cash CCPs must invest in reverse repos and government bonds. As margin requirements in the European interbank repo market are recalculated infrequently or are pre-established \cite[e.g.,][]{Mancini2016,Nyborg2016}, we control for this variable with a lag of one day.

Finally, we also control for the ECB’s public sector purchase programme (PSPP) as it constitutes an alternative explanation \cite[i.e., QE effects]{} for the repo rates patterns shown in Figure 1 \cite[e.g.,][]{Arrata2018}. To capture the size of PSPP operations, we compute the percent-share of a outstanding debt that has been purchased by the ECB through PSPP, i.e.

\[PSPP_{i,t} = \frac{Purchases_{i,t}}{Outstanding_{i,t}} \times 100 \]

where \(Purchases_{i,t} \) denotes the cumulative PSPP purchases of country \(i \)'s government debt until day \(t \), and \(Outstanding_{i,t} \) denotes that country’s total outstanding debt\footnote{We exclude inflation-linked debt for simplicity and because it is less relevant for the repo market.} eligible for PSPP purchases. To construct \(Purchases_{i,t} \), we start out with the monthly breakdown of PSPP purchases.\footnote{\url{https://www.ecb.europa.eu/mopo/implement/omt/html/index.en.html}} Using the weekly time series of “Securities held for monetary policy purposes” contained in the ECB’s weekly financial statements, we interpolate \(Purchases_{i,t} \) to weekly frequency.\footnote{\url{https://www.ecb.europa.eu/press/pr/wfs/2019/html/index.en.html}} The data source for weekly values of \(Outstanding_{i,t} \) is the ECB’s Eligible Assets database.\footnote{\url{https://mfi-assets.ecb.int/queryEa.htm}, although one would have had to download the data regularly since 2015. We are grateful for the ECB’s assistance.} Finally, we compute weekly values of \(PSPP_{i,t} \) and interpolate it linearly to daily frequency. As this variable is clearly not stationary, we include the day-to-day change \(\Delta PSPP_{i,t} \) in the regressions.

4 Supply Effects

Methods

The supply hypothesis puts forward that the regulatory-driven supply of repos (demand of collateral) by clearing houses decreases short-term rates. To test it, we use a standard panel

\[P_{i,t} = \beta_0 + \beta_1 PSPP_{i,t} + \beta_2 \text{other controls} + \epsilon_{i,t} \]
regression setup. Equation (1) outlines the baseline regression equation used and adapted in subsequent sections.

\[\text{Rate}_{i,t} = \alpha \cdot \text{Rate}_{i,t-1} + \gamma \cdot \text{Orderflow}_{i,t} + \lambda \cdot \text{Reverse}_{i,t} \\
+ \mu_i + \beta^T X_{i,t} + \epsilon_{i,t} \]

(1)

The \(i \) index denotes the cross-section of the panel, while \(\mu_i \) denotes the standard fixed-effects dummies, one for every \(i \). The response variable \(\text{Rate}_{i,t} \) denotes the spread between volume-weighted average interbank repo rates and the central bank deposit rate.

We add the first lag of the dependent variable as a control to control for any persistence in the repo rates variables. To account for endogenous demand and supply within the interbank market, we add interbank order flow as an explanatory variable. When repo rates are regressed on it, the estimated coefficient \(\gamma \) captures the order flow price impact within the interbank repo market.

The \(\text{Reverse}_{i,t} \) variable contains the aggregate and standardised CCP reverse repo investment volume. The coefficient \(\lambda \) is our main coefficient of interest, as it captures the impact of CCP reverse repo investments in the OTC market on interbank repo rates. It is worth stressing that \(\text{Reverse}_{i,t} \) can be interpreted as the order flow (although standardised and with a negative sign) stemming from the CCPs cash lending in the OTC segment. Hence, we occasionally refer to \(\lambda \) as the price impact of the CCP reverse repo investments. We do so, although the CCPs trade OTC while the interbank market is based on centrally cleared electronic limit order books. Thus, it is important to remember that \(\lambda \) captures spillover effects from the OTC (bilateral) segment to interbank (centrally cleared) segment of the repo market. We regard the CCP repo investment as exogenous to the interbank repo market, as it is (a) driven by regulation, (b) determined by the amount of cash accumulated on CCPs’ margin accounts, and (c) conducted in the OTC segment, while we analyse the impact on the interbank market.

\(^{27} \) Including lagged values of the dependent variable might introduce Nickell’s (1981) bias. However, this is typically the case for panel regressions with an arbitrarily large cross-section but only a few time periods. As the number of time periods grows, the bias approaches zero. Given that our data feature a long time-series of 1065 business days and only 21 cross-sectional segments, we believe that our results do not suffer from this bias.
The $X_{i,t}$ vector contains our control variables, which we motivate next.

$$X_{i,t} = \begin{bmatrix}
 Bonds_{i,t} \\
 CIP_{i,t} \\
 VSTOXX_{t-1} \\
 \Delta PSPP_{i,t}
\end{bmatrix}$$

First, we add CCPs’ aggregate and standardised outright government bonds purchases as they can indirectly lower repo rates through “specialness“, that is, collateral becomes scarce [Duffie 1996]. Hence, if $Reverse_{i,t}$ and $Bonds_{i,t}$ are correlated, excluding $Bonds_{i,t}$ from the regression would lead to an omitted variable bias in the coefficient λ. Second, we control for the overall financial markets situation by adding the CIP basis and volatility index. The former influences repo market supply and demand, whereas the latter influences the amount of cash deposited on CCPs’ margin accounts (see Section 3.3 for details). Finally, we control for possible effects stemming from Quantitative Easing, such as collateral scarcity, using the percent-share of countries’ outstanding and eligible government debt purchased through the ECB’s PSPP.

To be conservative, we exclude the last day of each quarter from the regression as extreme seasonalities affect interbank repo rates, trading volume, and the CIP basis. This also excludes or reduces confounding factors apart from leverage ratio reporting that might change a bank’s repo trading behaviour during these days [BIS 2017 p. 38]. It is worth stressing that excluding the very last days at quarter-ends does not qualitatively change our main results and do not weaken our diff-in-diff identification strategy (see Section 5) because all repo tenors under scrutiny are equally affected during these days.

Consistent with the supply hypothesis, a negative λ indicates that in a non-fully-elastic environment, the increasing supply from CCP reverse repo investments lowers rates (while holding the repo demand constant).

Results

Table 2 shows the main findings. Two considerations arise: First, the estimates of the price impact of CCP reverse repo investments are significantly negative supporting the supply hypothesis. Every standard deviation increase in reverse repo investments lowers interbank repo rates from the central bank deposit rate by 1.559 basepoints. The estimated supply impact from CCP reverse repos remains significant after adding the control variables.
Second, all estimated coefficients of the control variables exhibit the expected signs, but are not always statistically significant. Specifically, the estimates of the price impact of the interbank order flow is positive and significant, as postulated by microstructure theories. CCPs’ bond purchases do not significantly affect the repo rates suggesting that specialness has only an indirect effect in the regulatory transmission mechanism. On the other hand, the significance of the CIP estimate confirms the important connection between short-term interest rates and FX rates. Also, the positive coefficient of the volatility variable points to the tendency of funding cost to increase in stressed market conditions inducing some margin procyclicality. Unconventional monetary policies do not seem to affect our results.

Overall, these results are consistent with the idea that CCP reverse repo investments due to new regulation drags down repo rates below the central bank’s deposit rate. It also highlights that rather than being market neutral, the purchase of safe assets induced by the EMIR rule seems to contribute to their scarcity.

Our results are also economically significant. The average standard deviation of $Rate_{i,t}$ across countries i is 26 bp. Using the estimated coefficient of -4.864 from our baseline regression, together with the average standard deviation of $Reverse_{i,t}$ of 0.315, about 1.533 bp (or 5.8%) of the day-to-day variation in repo rates can be attributed to CCPs’ reverse repo investments. This day-to-day impact compounds over time and leads to a larger impact on the long-run level of repo rates, but data sensitivity issues prevent us from making a more precise statement. Nevertheless, a 1-2 bp day-to-day impact is significant considering the sheer size of this market (see Table 1 and comparing it to other money market interest rate dispersions (e.g., see Duffie and Krishnamurthy (2016b, p. 14) for the US).

5 Demand Effects

Methods

Our regression design has so far aimed to identify a causal supply effect of EMIR regulations on the interbank repo market. Next, we describe how we augment the regression design to identify the demand effect stemming from the Basel III leverage ratio.

As outlined in Section 2.2, entering a repo contract (i.e., borrowing cash) extends a bank’s balance sheet, and hence lowers the leverage ratio, whereas entering a reverse repo contract does
not. Thus, the repo accounting practice induces banks to cut back repo positions to increase their leverage ratios while limiting reverse repo positions cannot be used to improve the leverage ratio. It is therefore fair to assume that implementing leverage ratio regulation depresses repo demand, but not repo supply.

The shape of the repo demand curve can be investigated by exploiting exogenous variation in repo supply. CCPs’ reverse repo investment can serve this purpose as it is determined by new regulation (see Section 2.1). If repo demand falls when Basel III’s leverage ratio is binding, a given increase in repo supply should lead to a larger drop in repo rates. This means that the negative price impact of reverse repos becomes more severe with falling repo demand. This identification strategy implicitly assumes that repo supply follows the same systematic patterns both outside and inside the regulatory reporting period. Thus, it does not change due to leverage ratio concerns.

Therefore, we test whether repo demand falls by checking whether the negative price impact of CCPs’ reverse repo investments becomes stronger (i.e., the coefficient λ in (1)). We employ a difference-in-differences design to causally attribute these changes to leverage ratio regulation. Whether a repo position ends up on the balance sheet and worsens a bank’s leverage ratio depends on its tenor and on leverage ratio disclosure schedule. This has been documented by Du et al. (2018, pp. 940–944) for foreign exchange derivatives: They show that violations of the covered interest rate parity increase when leverage ratios must be disclosed to authorities. However, as most European authorities only ask for a snapshot of the balance sheet on the last day of the quarter, only contracts that have not yet matured will be affected by leverage ratio regulations. For example, a one-week forward position traded on 1 March will not affect the balance sheet on 31 March, when the leverage ratio must be reported. However, a one-month forward position traded on the same day will end up on the balance sheet and affected the leverage ratio regulation. Therefore, CIP violations involving one-month forwards will be larger.

Analysing one-day and one-week tenors enables us to exploit the same differences in the repo market (see Figure 3). A one-week repo (given by repos with a spot-one-week tenor in our dataset) stays on the balance sheet for five business days, starting on the settlement date. In contrast, a one-day repo (overnight, tomorrow-next and spot-next) enters the balance sheet on the settlement day only as it matures and will be unwound the following morning. Hence, during the four days before the last day of the quarter, one-week repos are affected by leverage ratio
regulation whereas 1-day repos are not. If repo demand is affected by leverage ratio regulations, we expect the price impact of CCP reverse repo investments on one-week repos to become more negative during those four days. In contrast, the price impact on one-day repos is not expected to change during this time period. Hence, we compute the difference in price impacts between one-day and one-week repos and test whether it changes during the last four days of the quarter. A change in this difference should be caused by falling borrowing demand due to leverage ratio regulation.

We introduce two additional dummy variables into regression (1) to estimate this change of differences. Variable 1_{W_i} equals 1 iff. the tenor of repo contract i is spot-1-week (S1W). Similarly, $BeforeEoQ_t$ equals 1 iff. day t is 1-4 days before the end of a quarter. To obtain the difference-in-differences estimator, we interact these dummies with CCP reverse repo investments $Reverse_{i,t}$.

$$Rate_{i,t} = \alpha \cdot Rate_{i,t-1} + \gamma \cdot Orderflow_{i,t} + \lambda_1 \cdot Reverse_{i,t} + \lambda_2 \cdot 1_{W_i} \cdot Reverse_{i,t} + \lambda_3 \cdot BeforeEoQ_t \cdot Reverse_{i,t} + \lambda_4 \cdot 1_{W_i} \cdot BeforeEoQ_t \cdot Reverse_{i,t} + \mu_i + \beta^T X_{i,t} + \eta \cdot BeforeEoQ_t + \epsilon_{i,t} \quad (2)$$

In this regression, λ_1 captures the impact on one-day repos during normal times (i.e., not before the end-of-quarter), whereas λ_2 represents an additional impact on one-week repos during normal times and λ_3 represents an additional impact on one-day repos before the end of the quarter. Thus, λ_4 is the difference-in-differences estimator and captures the additional impact on one-week repos before the end of the quarter. We also add the uninteracted $BeforeEoQ_t$ term to account for overall differences in the level of $Rate_{i,t}$ before the end of the quarter. Note that we do not explicitly add the uninteracted 1_{W_i} term because it is collinear with and hence absorbed into the fixed effects μ_i.

The main variable of interest to test the demand hypothesis is λ_4 as it captures an additional price impact on repos that end up on the balance sheet during leverage-ratio reporting days. If leverage-constrained dealers or banks cater more CCPs’ reverse repo orders ($Reverse_{i,t}$) in the OTC segment, they have less balance sheet space left to borrow or intermediate in the interbank market. Hence, if leverage ratio regulation lowers demand for repos, then the price
impact of CCP reverse repos on interbank repos ought to be even more negative ($\lambda_4 < 0$) for repo contracts that contribute to the leverage ratio.

The λ_3 coefficient is of secondary interest because it captures an additional price impact on one-day repos during the last days before the end-of-quarter. If our assumptions hold, then λ_3 ought to be close to zero as these one-day repos mature before the leverage ratio must be disclosed.

Results

Table 3 shows the estimates from the difference-in-differences regression equation (2), which isolates the causal effect of leverage ratio reporting on repo rates. During the last four days before the last day of the quarter (when leverage ratios must be calculated and reported), the difference between the price impacts of one-day and one-week repos changes significantly. While the former additional price impact is statistically insignificant, the latter suffer from an additional staggering price impact of -26.383 bp per standard deviation (with a P-value of 5.2%). Given that repo supply is not affected by leverage ratio concerns, a stronger price impact must be caused by decreasing repo demand. More specifically, the slope of the demand curve must become more negative, which is identified by this additional price impact. On the other hand, the inward shift of the demand curve is captured by the coefficient of $BeforeEoQt \cdot 1W_i$ which is also significantly negative. Overall, our results suggest that the demand for repos that end up on the balance sheet during the end-of-quarter falls. In contrast, the demand for repos not affected by the leverage ratio regulation remains unchanged.

[Insert Table 3 here.]

6 Additional Tests

We have so far documented the effect of the EMIR and Basel III on short-term rates. In what follows we explore the transmission mechanism. In particular, we explore (i) whether regulation induces rate dispersion across repos, which if true, would suggest collateral scarcity as a transmission channel, and (ii) whether it affects repo rates via the borrowing and lending behaviour of banks who act as CCPs’ investment counterparties.

\[^{28}\text{Although our results are robust to a potential shift in the demand curve, we do not claim to properly identify it.}\]
6.1 Rate Dispersion - Convenience Yields and Asset Scarcity

Methods

One of the takeaways from Figure 1 is the increase in the repo rate dispersion across the different European countries (especially) after 2016. This could be consistent with an uneven impact of regulation induced by convenience yields and collateral scarcity. The basic intuition is that near-money assets provide safety and liquidity benefits to their holders. This gives rise to a convenience yield, which increases with asset scarcity (Krishnamurthy & Vissing-Jørgensen, 2012). The differences in convenience yields have been found to explain cross-sectional and temporal variations in money market instruments (e.g. Bartolini, Hilton, Sundaresan, & Tonetti, 2011). In our setting, this would suggest that the observed repo rate dispersion is associated with the CCP investment in the repo market, which increases convenience yields by aggravating asset (collateral) scarcity.

The repo rate dispersion could be exacerbated by limited intermediation (or trading) due to balance sheet constraints. In a friction-less market, a bank could exploit such a dispersion by borrowing at a low rate and, simultaneously, a lending at a high rate. However, such a trading strategy would give rise to a regulatory cost as it would expand the bank’s balance sheet (note that such repo positions cannot be netted out as they involve different collateral, see also the discussion in Section 2.2). Therefore, these regulatory-driven costs can increase segmentation in repo markets and allow significant rate dispersion to persist. This would be particularly the case during the leverage ratio reporting dates.

We measure the repo rate dispersion as:

\[
\text{Spread}_{q,b,m,t} = \text{Rate}_{q,m,t} - \text{Rate}_{b,m,t},
\]

where \(\text{Rate}_{m,t}\) denotes the spread between the volume-weighted interbank repo rate and the central bank deposit rate for tenor \(m\) at day \(t\), and it is defined for a 'quote' country \(q\) and a 'base' country \(b\). Intuitively, the repo with the lowest rate provides the largest convenience yield. We fix the base \(b\) to the country exhibiting the lowest repo rates, which ensures that the dispersion measure is positive. In what follows we drop the index \(b\) since it is fixed. We next run the following repo rate dispersion panel regression, whereby the combination of \(q\) and \(m\)

\[29\] Note that the leverage ratio cannot drive such as repo rate dispersion as it is an unweighted risk-measure and hence does not differentiate between repos with different collateral.
constitute the cross-section:

\[
\text{Spread}_{q,m,t} = \alpha \cdot \text{Spread}_{q,m,t-1} + \gamma_1 \cdot \text{Orderflow}_{q,t} + \gamma_2 \cdot \text{Orderflow}_{b,t} + \lambda_1 \cdot \text{Reverse}_{q,t} + \lambda_2 \cdot \text{Reverse}_{b,t} + \beta^T X_{q,t} + \mu + \epsilon_{q,m,t},
\]

where the vector of control variables is defined as:

\[
X_{q,t} = \begin{bmatrix}
\text{Bonds}_{q,t} \\
\text{Bonds}_{b,t} \\
\text{CIP}_{EUR,t} \\
\text{VIX}_{t-1} \\
\Delta \text{PSPP}_{q,t} \\
\Delta \text{PSPP}_{b,t}
\end{bmatrix}
\]

We exclude Sterling repos from these regressions to ensure that the dispersion is not driven by currency-specific factors. The coefficients \(\lambda_1\) and \(\lambda_2\) capture the impact of CCP reverse repo investments on the repo rate spread between country \(q\) and the base country \(b\). Given that the supply hypothesis implies a negative price impact of every country’s investments on its own repo rate, we expect \(\lambda_1\) to be negative as reverse repo investments lower the spread’s upper component. Conversely, we expect \(\lambda_2\) to be positive as reverse repo investments decrease its lower component.

In addition to the separate base and quote effects, we estimate overall impact. Specifically, we take the sum over all reverse repo investments, that is, \(\text{TotalReverse}_t = \sum_q \text{Reverse}_{q,t}\), and regress spreads on total reverse repo investments.

\[
\text{Spread}_{q,m,t} = \lambda \cdot \text{TotalReverse}_t + \ldots
\]

Here the interpretation of \(\lambda\) is unambiguous. If \(\lambda\) is positive, then CCPs’ reverse repo investments increase the dispersion of Euro repo rates.
Finally, we repeat the difference-in-differences regression (2) for spreads instead of rates.

\[
Spread_{q,m,t} = \lambda_1 \cdot TotalReverse_t + \lambda_2 \cdot 1W \cdot TotalReverse_t \\
+ \lambda_3 \cdot BeforeEoQt \cdot TotalReverse_t \\
+ \lambda_4 \cdot 1W \cdot BeforeEoQt \cdot TotalReverse_t \\
+ \eta \cdot BeforeEoQt + \ldots
\] (5)

If the leverage ratio regulation increases rates dispersion in the Euro repo market, then we expect \(\lambda_4 \) to be positive.

Results

Table 4 delivers two main results. First, CCPs’ reverse repo investments widens repo rates dispersion. Specification 1 in Table 4, which analyses the separate impact of CCPs’ reverse repo investment of the quote country and base country, shows that the rate repo spread increase is mostly driven by the base (i.e., low-rate) country impact. For instance, we find that a hypothetical CCP purchase of base country’s collateral assets increases the spread by about 7.269 bp per standard deviation of investments. Conversely, investments in the quote country (i.e. high-rate leg) have no significant effect. These findings provide empirical support to the safe asset hypothesis, that is, the regulatory-driven collateral demand of the clearing infrastructure increases the convenience yield of purchased assets. The results in columns 2 and 3 in Table 4 support the evidence that the CCP reverse repo investments due to EMIR increase rate dispersion in the Euro repo market. For instance, a one standard deviation increase in total reverse repo investments, regardless of country, increases rate dispersion by 3.572 bp.

The results in columns 4 and 5 in Table 4 (i.e., the diff-in-diff setting as in (3)), suggest that repos that end up on the banks’ balance sheet during reporting days exhibit an additional increase in rate dispersion of 21.369 bp per standard deviation of reverse repo investments. This is consistent with the balance-sheet constrains hypothesis. The drop in the demand due to the leverage ratio regulation increases rate dispersion and exacerbates the impact of repo supply.

[Insert Table 4 here.]
6.2 Individual Bank Behaviour - CCP Investment Counterparties

In this section, we investigate the transmission mechanism of regulations through the lens of the bank’s individual behaviour. We do so by analysing how individual banks borrow and lend in the interbank market, and whether their behaviour is different when they act as CCPs’ investment counterparties in the OTC repo segment.

Entering a bilateral repo with a CCP has three main effects for a bank: a cash surplus, a shortage of HQLA assets, and an expansion of the balance sheet. Given the associated inventory and regulatory costs (see the discussion in Section 2.2), banks who trade with the CCP in the OTC repo market have an incentive to offset any cash and asset imbalances in the interbank market. Thus, two testable hypotheses arise: First, the banks who act as the CCPs investment counterparties are expected to lend more in the interbank market. Second, we expect these banks to also reduce their liquidity provision in the interbank market as a result of the balance sheet expansion and the associated costs. Note that any bank positions held in the OTC segment cannot be netted against positions held in the interbank segment.

Methods

To analyse individual banks’ behaviours in the interbank market, we consider their propensity to lend or borrow cash, and to provide or consume liquidity. As standard in market microstructure, the submission of market and limit orders define the provision and consumption of market liquidity, respectively. Specifically, we divide a bank’s daily gross trading volume into four shares: (1) borrowing cash with market orders (“aggressive” borrowing consuming liquidity); (2) borrowing with limit orders (“non-aggressive” borrowing supplying liquidity); (3) lending with market orders (aggressive lending); and (4) lending with limit orders (non-aggressive lending). Let k denote bank k, and let the pair (t,j) denote the j-th transaction on day t. The propensity of bank k to borrow (lend) cash consuming (providing) market liquidity

30 The repo data from BrokerTec and Eurex Repo contains anonymized trader IDs that allows us to reconstruct bank’s individual trading positions. We identify CCP counterparties by matching BrokerTec (Eurex Repo) transactions to regulatory data from RepoClear (Target2) to obtain actual bank names, and then flagging those banks that borrow from CCPs in the OTC market. Note that we discard repo transactions from MTS Repo (which serves the Italian repo market) for this analysis because neither anonymous IDs nor regulatory data to match transactions against is available.
on day t is given by $\text{MarketBorrow}_{k,t}$ ($\text{LimitLend}_{k,t}$) and defined as follows,

$$
\text{MarketBorrow}_{k,t} = \frac{\sum_j 1\{\text{Borrower}_{t,j} = k \land \text{Aggressor}_{t,j} = k\} \cdot \text{Volume}_{t,j}}{\sum_j \text{Volume}_{t,j}}
$$

$$
\text{LimitLend}_{k,t} = \frac{\sum_j 1\{\text{Lender}_{t,j} = k \land \text{Aggressor}_{t,j} \neq k\} \cdot \text{Volume}_{t,j}}{\sum_j \text{Volume}_{t,j}}
$$

where $\text{Volume}_{t,j}$ denotes the cash amount and $\text{Borrower}_{t,j}$ ($\text{Lender}_{t,j}$) denotes the identity of the borrower (lender) of transaction (t,j). Finally, $\text{Aggressor}_{t,j}$ denotes the identity of the bank initiating the trade with a market order. The two other shares, $\text{MarketLend}_{k,t}$ and $\text{LimitBorrow}_{k,t}$ are defined analogously.

Using the same sample period as before, we obtain panel regressions whose cross sections consist of individual banks (rather than collateral countries, as before). To determine how banks react to CCPs’ reverse repos, we regress each share $Y_{k,t}$ on the total volume of CCPs reverse repo investments, Reverse_t, the lagged dependent variable, bank and month fixed effects, as well as a set of controls.

The key innovation in these regression is to capture the behaviour of banks who trade with the CCPs in the OTC repo segment. We do so by constructing a dummy variable Counterparty_k, which equals one for banks who we know that they were the investment counterparties of the CCPs in our sample throughout our sample period. More formally, the regressions are defined as follows:

$$
Y_{k,t} = \mu_{1,k} + \mu_{2,month(t)} + \alpha \cdot Y_{k,t-1} + \beta^T X_t + \lambda_1 \cdot \text{Reverse}_t + \lambda_2 \cdot \text{Counterparty}_k \cdot \text{Reverse}_t + \epsilon_{k,t},
$$

(6)

where the coefficient λ_2 of the interaction term between the Reverse_t and the Counterparty_k is the main variable of interest.

A significant positive λ_2 for $Y_{k,t} = \text{MarketLend}_{k,t}$ and for $Y_{k,t} = \text{LimitLend}_{k,t}$ would support that the CCPs’ investment counterparties tend to lend more in the interbank market. Similarly, a significant negative λ_2 for $Y_{k,t} = \text{MarketBorrow}_{k,t}$ and for $Y_{k,t} = \text{LimitBorrow}_{k,t}$ would support that the CCPs’ counterparties in the OTC repo segment tend to borrow less. Finally, a significantly negative λ_2 coefficients associated with $Y_{k,t} = \text{LimitLend}_{k,t}$ and $Y_{k,t} = \text{LimitBorrow}_{k,t}$ would be in line with a reduced provision of market liquidity by CCPs’ coun-

31 Note that either $\text{Lender}_{t,j} = \text{Aggressor}_{t,j}$ or $\text{Borrower}_{t,j} = \text{Aggressor}_{t,j}$, and therefore $\text{MarketBorrow}_{k,t} + \text{MarketLend}_{k,t} + \text{LimitBorrow}_{k,t} + \text{LimitLend}_{k,t} = 1$ by definition.
The set of controls X_t contains variables that may influence individual banks’ trading behaviour.

$$X_t = \begin{bmatrix}
Bonds_t \\
OrderShare_t \\
\Delta Rate_t \\
\log(Volume_t) \\
EffectiveSpread_t \\
CIP_t \\
VSTOXX_{t-1}
\end{bmatrix}$$

In addition to the control variables CIP_t and $VSTOXX_{t-1}$ used in previous regressions, we include four market variables that can influence the trading behaviour of individual banks:

First, to capture overall market imbalances, $OrderShare_t$ is defined as the market order flow divided by gross trading volume. The main idea is that one-sided markets (i.e. $|OrderShare_t|$ is close to one) may affect order aggressiveness. Second, we add the daily repo rate change as a higher (lower) rate might discourage borrowing (lending). Third, (log) total trading volume captures overall activity in the market. Fourth, we estimate effective spreads, as transaction cost is an important dimension of market illiquidity influencing the propensity to trade and to provide liquidity.

Results

Table 5 summarises the results. Three key findings stand out: First, the strongest result is obtained for aggressive lending. For every standard deviation increase in CCPs reverse repo lending, banks borrowing from CCPs in the OTC segment (i.e., the banks who act as the investment counterparties of CCPs) lend 0.7% more in the interbank market relative to banks that did not borrow from a CCP. This supports the hypothesis that banks borrowing from CCPs tend to offload cash surpluses by lending aggressively to other banks in the interbank market.

Second, there is no significant decrease in aggressive borrowing in response to CCP lending.

[32] We repeated this analysis by including $\Delta PSPP_t$ as additional control and we obtained insignificant coefficients. We present the regression results without $\Delta PSPP_t$ because its inclusion only raises estimator variance without materially changing the results.

[33] Using trade-by-trade changes in repo rates, we compute the [Roll (1984)] measure of transaction costs for every collateral and tenor. We also analysed realized volatility as an alternative control variable, but we exclude it from the encompassing model since it is highly correlated with the effective spread.
This corroborates our assumption that CCPs’ reverse repos only affect repo supply in the interbank market, but not demand.

Third, there is mixed evidence of diminished market liquidity provided by banks entering repos with CCPs in the OTC segment. Non-aggressive borrowing of CCP counterparties experiences a drop of 0.5% per standard deviation of CCP reverse repos relative to other banks. This is consistent with banks cutting back on intermediation in response to being leverage-constrained by repo borrowing positions obtained against the CCPs in the OTC segment and which cannot be netted with other positions in the OTC or centrally cleared market. On the other hand, the impact on non-aggressive lending is insignificant, perhaps because the diminished liquidity provision is offset by a larger pressure to lend in the interbank market.

[Insert Table 5 here.]

6.3 Robustness Tests

Our findings provide compelling evidence that the supply and demand regulatory effects hold true after controlling for the PSPP impact, which we use as a control for QE effects. However, a potential concern is that QE affects the initial margin contributions of clearing members. More specifically, the increased excess liquidity and collateral scarcity originated from the PSPP programme might induce clearing members to deposit more cash than necessary on margin accounts, thus, affecting the level of CCP investment in repo markets. However, we believe this is not the case for at least three reasons (see also the discussion in Section 2). First, in practise CCPs discourage their members to deposit cash collateral by charging a spread on the overnight benchmark index. This spread makes any excess cash deposits by clearing members unsustainable. Second, the CPMI-IOSCO Public Quantitative Disclosures by European CCPs show that the composition of collected margin is very stable quarter-by-quarter, with cash accounting for about 40%. Third, more importantly, the correlation between $\Delta PSPP_{i,t}$ and $\Delta Reverse_{i,t}$ is close to zero. Hence, we conclude that it is very unlikely for QE to be a driver of the CCP repo investment policy.

In Section 5 we test the demand hypothesis using a difference-in-differences method based on the repo maturity. An alternative approach would be to exploit the differences in disclosure frequency across jurisdictions, in order to separate “treated” traders affected by leverage ratio

34 Banks cannot net out their repo borrowing from CCPs because there is no multilateral netting in bilateral agreements and CCPs do not regularly lend.
regulation from “untreated” repo traders. In fact, as discussed in Section 2.2 some banks have to report the leverage ratio at the end of every month (in the U.K.) or an average over several month ends. However, this approach has several disadvantages. For instance, many banks in our sample are international entities. Also, many small differences (e.g., time of policy change, disclosure requirements, etc.) exist between countries. Despite these limitations, we test the demand hypothesis by replacing the \(\text{BeforeEoQ}_t \) dummy (denoting the last four days before the last day of the quarter) with an analogous \(\text{BeforeEoM}_t \) dummy that is 1 on the last four days before the last day of each month. The obtained results are qualitatively identical even if the effect is not as strong. Therefore, we conclude that our results also hold true if balance sheet constraints at the end of each month are considered.

Finally, we address concerns of spurious correlations in our results due to potential non-stationarity in some of our variables. Most importantly, we remove from the cross-section a single country whose CCP reverse repo investments are only weakly stationary. Our results remain virtually unchanged. In addition, we remove some control variables exhibiting strong persistence, namely, the \(\text{Bonds}_{i,t} \) and \(\text{VSTOXX}_{t-1} \) variables. We find that all estimates remain similar in sign, magnitude and significance. Furthermore, and even though we take first differences, \(\Delta PSPP_{i,t} \) still exhibits strong persistence. Excluding it from the regression, as well as replacing it with the change in day-to-day change in Eurosystem excess liquidity, does not materially affect our results.\footnote{Excess liquidity is computed as the aggregate excess reserves defined as Eurosystem’s deposits at the ECB deposit facility net of the recourse to the marginal lending facility, plus current account holdings in excess of those contributing to the minimum reserve requirements. We obtain these variables from the ECB statistical data warehouse. Replacing \(\Delta PSPP_{i,t} \) with \(\Delta EL_t \) renders its regression coefficients insignificant but does not materially affect our results.}

Our results also stay significant if we apply all of these changes at the same time. In general, we find that our results remain equally strong or even become stronger (both in magnitude and significance) in each of these robustness checks.

7 Conclusion

Using unique and granular datasets of European repo transactions and clearing houses (CCP), we analyse the effects of EMIR and Basel III regulation on short-term interest rates. First, we study the regulatory effects inducing clearing infrastructure to supply cash against safe collateral assets, as prescribed by EMIR law. Second, Basel III regulation discourages borrowing demand (collateral supply) through the leverage-constrainedness of repo dealers, particularly...
during specific reporting periods. In addition, we delve into the regulatory transmission mechanism by examining which assets and which banks are most affected.

Four main findings arise from our study: First, rather than being market-neutral, the collateralisation of CCPs’ cash holdings mandated by EMIR exerts a significant downward pressure on short-term interest rates and thus supports the supply hypothesis. Second, the supply effect is stronger when the Basel III leverage ratio regulation is binding. This result is consistent with the idea that balance-sheet-constrained banks are less inclined to demand repos, which empirically supports the demand hypothesis. Third, new regulation widens repo rate dispersion affecting most repos with the largest convenience yield. Finally, banks that have been counterparties of CCPs lend more and borrow less (aggressively) in the interbank market, perhaps in the attempt of offsetting cash surplus and asset shortages.

Our analysis is relevant to policy makers as it highlights several unintended effects on short-term rates that are caused by some regulatory reforms. Compliance with these regulations strengthens cash supply and collateral demand. This results in larger dispersion and downward pressure on interbank rates, which impedes monetary policy effectiveness (Duffie & Krishnamurthy, 2016a). This phenomenon has been attributed to various factors, including collateral scarcity due to central banks’ extraordinary monetary policy instruments and market segmentation (Duffie et al., 2015). Our findings offer an alternative explanation and point to prudential regulations, which make CCPs new important market players and constrain the trading books and balance sheets of repo intermediaries.

Various remedies can be considered. First, regulators should consider the joint effects of existing and new regulations. For instance, more comprehensive inspection, as we propose in this paper, illuminates what the interaction between CCP compliance with EMIR rules and the Basel III leverage ratio regulation implies for short-term rates. Second, carefully (re-)designing some regulations might move us closer to the efficient frontier of market efficiency and financial stability (Duffie, 2018). For instance, the strong seasonalities around quarter ends can be mitigated by monitoring leverage ratios more frequently. In addition, the exemption of encumbered repo collateral assets from the leverage ratio rule would reduce the asymmetric treatment of repo and reverse repo and partially deter banks from window-dressing behaviour.

Third, our results indicate that the negative effects on repo market functioning are due to

36For instance, in recent years Euro repo rates have fallen below the lower bound of the ECB’s interest rate corridor and have dispersed considerably, thus hindering the passthrough efficiency of the ECB’s monetary policy.
constrained intermediaries. Rather than rolling back prudential regulations, other measures relaxing these constraints and promoting the de-intermediation of money markets should be contemplated. For instance, giving non-financials access to centrally cleared markets could free up space on dealers’ balance sheets, and thereby mitigate these effects. Also, increasing netting efficiency, for example, by enhancing CCP-interoperability and compression services, could lead to a more efficient use of dealers’ balance sheets. Finally, the constraining effect of CCPs’ reverse repo investments in dealers’ balance sheets is bound to become more severe as central clearing is mandated for more and more financial products. To mitigate CCPs’ increasing reverse repo investments, regulators could offer alternative ways of holding safe assets and grant CCPs full access to central bank deposit accounts.\footnote{Changing EMIR investment requirements would ultimately affect CCPs’ risk profile. Hence, offering alternative investment options could also lead to alternative risks for CCPs and the wider market.}

From a financial stability perspective, CCPs are systemically important financial institutions. In extraordinary circumstances CCPs might need to replenish their resources by liquidating the positions and margins of CCP members.\footnote{Earlier layers of CCPs’ default waterfall are initial margins of defaulting members, default fund contributions, and contributions to CCP capital (Cont, 2015).} In this situation, CCPs would have to cut back on their reverse repo lending. Through the lens of our findings, short-term rates would increase and banks would lend less in the interbank market,\footnote{In a more severe situation, CCPs might even need to become repo borrowers. If CCP borrowing spills over the same way as lending does, then it would additionally increase aggressive borrowing in the interbank market.} amplifying distressed market conditions.
References

Du, W., Gadgil, S., Gordy, M. B., & Vega, C. (2016). *Counterparty risk and counterparty choice in the credit default swap market.* (Finance and Economics Discussion Series 2016-087)

Figure 1: European Repo Rates

The figure presents the evolution of European repo rates together with central bank deposit rates from November 4, 2013 to December 29, 2017.
Figure 2: Impact of Repo Trading on the Leverage Ratio

This figure illustrates how entering a repo contract affects traders’ balance sheets, starting out from a zero position in repos. The upper half shows the borrower’s and lender’s balance sheets before the trade, whereas the lower half shows balance sheets between the settlement and maturity date. The balance sheet of the repo trader (cash borrower) extends in size since the collateral pledged to the lender remains on his balance sheet and the received cash is offset by a new liability. Consequently his leverage ratio drops. Conversely, the balance sheet of the reverse repo trader (cash lender) remains constant in size as his cash position is simply replaced by a receivable. Hence, his leverage ratio stays the same.
Figure 3: Balance Sheet Impact around Reporting Days

The figure presents different repo contract settled around a balance sheet reporting day. Each column corresponds to a business day, with the thick bordered column representing the reporting day. Each row corresponds to a repo trade. The coloured bars highlight those days on which each trade ends up on the balance sheet. The red bars correspond to repos that show up on the balance sheet during the reporting day. All one-week repos settled during the four days before the reporting day end up on the balance sheet on the reporting day, unlike the one-day repos. Note that the trading day is irrelevant. Hence, our t index always denotes settlement dates.

<table>
<thead>
<tr>
<th></th>
<th>20.</th>
<th>23.</th>
<th>24.</th>
<th>25.</th>
<th>26.</th>
<th>27.</th>
<th>30.</th>
<th>31.</th>
<th>01.</th>
<th>02.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenor</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>TN</td>
<td></td>
</tr>
<tr>
<td>SN</td>
<td></td>
</tr>
<tr>
<td>1W</td>
<td></td>
</tr>
</tbody>
</table>

- Trading Date
- Settlement to Maturity
This table breaks down the repo transactions in our dataset by the trading venue from which they were obtained, by their clearing arrangement (centrally cleared over CCPs or bilateral clearing), currency, origin country of the collateral, and by tenor. The breakdown is given in terms of the number of transactions and the nominal amount in Euros. The dataset contains all repo transactions conducted on the three major electronic platforms in Europe between 4 November 2013 and 29 December 2017.

<table>
<thead>
<tr>
<th></th>
<th>Transactions (in mn)</th>
<th>Volume (in EUR tn)</th>
<th>Transactions (share in %)</th>
<th>Volume (share in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>13.24</td>
<td>326.3</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>BrokerTec</td>
<td>8.76</td>
<td>189.7</td>
<td>66.1</td>
<td>58.1</td>
</tr>
<tr>
<td>Eurex Repo</td>
<td>0.33</td>
<td>36.9</td>
<td>2.5</td>
<td>11.3</td>
</tr>
<tr>
<td>MTS</td>
<td>4.16</td>
<td>99.7</td>
<td>31.4</td>
<td>30.6</td>
</tr>
<tr>
<td>CCP</td>
<td>12.86</td>
<td>317.1</td>
<td>97.1</td>
<td>97.2</td>
</tr>
<tr>
<td>Bilateral</td>
<td>0.38</td>
<td>9.2</td>
<td>2.9</td>
<td>2.8</td>
</tr>
<tr>
<td>Euro</td>
<td>12.23</td>
<td>296.9</td>
<td>92.3</td>
<td>91.0</td>
</tr>
<tr>
<td>Sterling</td>
<td>1.01</td>
<td>29.4</td>
<td>7.7</td>
<td>9.0</td>
</tr>
<tr>
<td>DE</td>
<td>2.90</td>
<td>74.4</td>
<td>21.9</td>
<td>22.8</td>
</tr>
<tr>
<td>ES</td>
<td>1.14</td>
<td>21.2</td>
<td>8.6</td>
<td>6.5</td>
</tr>
<tr>
<td>FR</td>
<td>1.36</td>
<td>31.0</td>
<td>10.3</td>
<td>9.5</td>
</tr>
<tr>
<td>GB</td>
<td>1.01</td>
<td>29.4</td>
<td>7.7</td>
<td>9.0</td>
</tr>
<tr>
<td>IT</td>
<td>4.08</td>
<td>97.8</td>
<td>30.8</td>
<td>30.0</td>
</tr>
<tr>
<td>NL</td>
<td>0.64</td>
<td>12.3</td>
<td>4.9</td>
<td>3.8</td>
</tr>
<tr>
<td>Other</td>
<td>2.09</td>
<td>60.3</td>
<td>15.8</td>
<td>18.5</td>
</tr>
<tr>
<td>1-day</td>
<td>12.99</td>
<td>313.6</td>
<td>98.1</td>
<td>96.1</td>
</tr>
<tr>
<td>>1-day</td>
<td>0.25</td>
<td>12.7</td>
<td>1.9</td>
<td>3.9</td>
</tr>
</tbody>
</table>
Table 2: Supply Effects on Repo Rates

The table reports the results of panel regressions of Rate, defined as the spread between volume-weighted average interbank repo rates and the central bank rate, on the aggregate and standardised CCP reverse repo investment volume (Reverse), and a number of other variables and controls. The variables are defined in Equation (1). The sample covers the period from November 4, 2013 to December 29, 2017. All specifications include segment fixed effects. We report robust standard errors clustered by segment and quarter in parentheses. *, **, *** denote significance at 1%, 5%, and 10% confidence level, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Rate_{i,t}</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse_{i,t}</td>
<td>-4.864***</td>
<td>-4.712***</td>
<td>-1.559**</td>
</tr>
<tr>
<td></td>
<td>(1.393)</td>
<td>(1.374)</td>
<td>(0.642)</td>
</tr>
<tr>
<td>Orderflow_{i,t}</td>
<td>0.343***</td>
<td>0.344***</td>
<td>0.279***</td>
</tr>
<tr>
<td></td>
<td>(0.075)</td>
<td>(0.074)</td>
<td>(0.034)</td>
</tr>
<tr>
<td>Bonds_{i,t}</td>
<td>0.282</td>
<td>-0.129</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.885)</td>
<td>(0.345)</td>
<td></td>
</tr>
<tr>
<td>CIP_{i,t}</td>
<td></td>
<td></td>
<td>161.077***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(55.401)</td>
</tr>
<tr>
<td>VSTOXX_{t-1}</td>
<td></td>
<td></td>
<td>0.128***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.024)</td>
</tr>
<tr>
<td>ΔPSPP_{i,t}</td>
<td></td>
<td></td>
<td>-29.389***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6.063)</td>
</tr>
<tr>
<td>Rate_{i,t-1}</td>
<td>0.485***</td>
<td>0.485***</td>
<td>0.767***</td>
</tr>
<tr>
<td></td>
<td>(0.057)</td>
<td>(0.057)</td>
<td>(0.024)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fixed Effects</th>
<th>Segment</th>
<th>Segment</th>
<th>Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted R^2</td>
<td>0.478</td>
<td>0.478</td>
<td>0.669</td>
</tr>
<tr>
<td>Observations</td>
<td>13,212</td>
<td>13,212</td>
<td>12,727</td>
</tr>
</tbody>
</table>
Table 3: Demand Effects on Repo Rates

The table reports the results of the difference-in-differences specification (2), where the Rate, defined as the spread between volume-weighted average interbank repo rates and the central bank rate, is regressed on the CCP reverse repo investment (Reverse), time dummies and their interactions, and a number of other variables. All variables are defined in Equation (2). The sample covers the period from November 4, 2013 to December 29, 2017. All specifications include segment fixed effects. We report robust standard errors clustered by segment and quarter in parentheses. *, **, *** denote significance at 1%, 5%, and 10% confidence level, respectively.

<table>
<thead>
<tr>
<th>Rate_{i,t}</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse_{i,t}</td>
<td>-3.450***</td>
<td>-3.385***</td>
<td>-0.808***</td>
</tr>
<tr>
<td></td>
<td>(1.198)</td>
<td>(1.190)</td>
<td>(0.426)</td>
</tr>
<tr>
<td>Reverse_{i,t} \cdot 1W_i</td>
<td>-16.154***</td>
<td>-16.105***</td>
<td>-0.968***</td>
</tr>
<tr>
<td></td>
<td>(4.988)</td>
<td>(4.960)</td>
<td>(3.255)</td>
</tr>
<tr>
<td>Reverse_{i,t} \cdot BeforeEoQt</td>
<td>0.710</td>
<td>0.714</td>
<td>0.181</td>
</tr>
<tr>
<td></td>
<td>(0.865)</td>
<td>(0.865)</td>
<td>(0.541)</td>
</tr>
<tr>
<td>Reverse_{i,t} \cdot BeforeEoQt \cdot 1W_i</td>
<td>-31.249**</td>
<td>-31.224**</td>
<td>-30.769**</td>
</tr>
<tr>
<td>BeforeEoQt</td>
<td>-2.513</td>
<td>-2.508</td>
<td>-2.798</td>
</tr>
<tr>
<td></td>
<td>(2.968)</td>
<td>(2.967)</td>
<td>(1.825)</td>
</tr>
<tr>
<td>BeforeEoQt \cdot 1W_i</td>
<td>-110.713***</td>
<td>-110.637***</td>
<td>-106.853***</td>
</tr>
<tr>
<td></td>
<td>(51.644)</td>
<td>(51.678)</td>
<td>(50.835)</td>
</tr>
<tr>
<td>Orderflow_{i,t}</td>
<td>0.355***</td>
<td>0.355***</td>
<td>0.282***</td>
</tr>
<tr>
<td></td>
<td>(0.076)</td>
<td>(0.076)</td>
<td>(0.034)</td>
</tr>
<tr>
<td>Bonds_{i,t}</td>
<td>0.129</td>
<td>-0.223</td>
<td>(0.891)</td>
</tr>
<tr>
<td></td>
<td>(0.363)</td>
<td>(0.363)</td>
<td>(0.363)</td>
</tr>
<tr>
<td>CIP_{i,t}</td>
<td>124.278***</td>
<td>(31.440)</td>
<td>(31.440)</td>
</tr>
<tr>
<td>VSTOXX_{t-1}</td>
<td>0.125***</td>
<td>(0.023)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>ΔPSPP_{i,t}</td>
<td>-34.299***</td>
<td>(5.748)</td>
<td>(5.748)</td>
</tr>
<tr>
<td>Rate_{i,t-1}</td>
<td>0.478***</td>
<td>0.478***</td>
<td>0.755***</td>
</tr>
<tr>
<td></td>
<td>(0.056)</td>
<td>(0.056)</td>
<td>(0.025)</td>
</tr>
</tbody>
</table>

Fixed Effects | Segment | Segment | Segment
Adjusted R^2 | 0.497 | 0.497 | 0.680
Observations | 13,212 | 13,212 | 12,727
November 4, 2013 to December 29, 2017. All specifications include segment fixed effects. We and their interactions, and a number of other variables. The sample covers the period from overall. The Spread is regressed on the CCP reverse repo investment, Reverse, time dummies and base-country, whereby we fix the latter to the country that exhibited the lowest repo rates overall. The Spread is regressed on the CCP reverse repo investment, Reverse, time dummies and their interactions, and a number of other variables. The sample covers the period from November 4, 2013 to December 29, 2017. All specifications include segment fixed effects. We report robust standard errors clustered by segment and quarter in parentheses. *, **, *** denote significance at 1%, 5%, and 10% confidence level, respectively.

<table>
<thead>
<tr>
<th>Spread<sub>q,m,t</sub></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse<sub>b,t</sub></td>
<td>6.876***</td>
<td>(0.582)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse<sub>q,t</sub></td>
<td>1.943</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TotalReverse<sub>q</sub></td>
<td>4.570***</td>
<td>(0.378)</td>
<td>3.475***</td>
<td>(0.354)</td>
<td>4.781***</td>
<td>(0.324)</td>
</tr>
<tr>
<td>TotalReverse<sub>q</sub> · 1W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TotalReverse<sub>q</sub> · BeforeEoQ<sub>t</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TotalReverse<sub>q</sub> · BeforeEoQ<sub>t</sub> · 1W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BeforeEoQ<sub>t</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BeforeEoQ<sub>t</sub> · 1W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orderflow<sub>b,t</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orderflow<sub>q,t</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonds<sub>b,t</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonds<sub>q,t</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPIEUR<sub>t</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSTOXX<sub>t−1</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔPSPP<sub>b,t</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔPSPP<sub>q,t</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spread<sub>q,m,t−1</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed Effects</td>
<td>Segment</td>
<td></td>
<td></td>
<td>Segment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R<sup>2</sup></td>
<td>0.360</td>
<td>0.378</td>
<td>0.401</td>
<td>0.399</td>
<td>0.420</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>14438</td>
<td>14438</td>
<td>13885</td>
<td>14438</td>
<td>13885</td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Effects on Banks’ Individual Behavior

The table reports regression results of Equation (6). The four dependent variables denote the shares of individual banks’ trading volume conducted using borrowing/lending and market/limit orders. These shares are regressed on the CCP reverse repo investment (Reverse), an interaction between Reverse and a dummy, Counterparty, indicating whether a bank is a counterparty for CCPs’ investments in the OTC repo market, and a number of controls. The sample covers the period from November 4, 2013 to December 29, 2017. All specifications include bank and month fixed effects. We report robust standard errors clustered by bank and month in parentheses. *, **, *** denote significance at 1%, 5%, and 10% confidence level, respectively.

<table>
<thead>
<tr>
<th></th>
<th>MarketBorrow<sub>k,t</sub></th>
<th>LimitBorrow<sub>k,t</sub></th>
<th>MarketLend<sub>k,t</sub></th>
<th>LimitLend<sub>k,t</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Reverse<sub>t</sub></td>
<td>0.00135</td>
<td>0.00257*</td>
<td>−0.00428***</td>
<td>0.00045</td>
</tr>
<tr>
<td></td>
<td>(0.00142)</td>
<td>(0.00155)</td>
<td>(0.00160)</td>
<td>(0.00139)</td>
</tr>
<tr>
<td>Reverse<sub>t</sub> · Counterparty<sub>k</sub></td>
<td>−0.00180</td>
<td>−0.00569***</td>
<td>0.00823***</td>
<td>−0.0049</td>
</tr>
<tr>
<td></td>
<td>(0.00166)</td>
<td>(0.00185)</td>
<td>(0.00203)</td>
<td>(0.00174)</td>
</tr>
<tr>
<td>Bonds<sub>t</sub></td>
<td>−0.00164</td>
<td>0.00012</td>
<td>0.00072</td>
<td>0.00052</td>
</tr>
<tr>
<td></td>
<td>(0.00136)</td>
<td>(0.00145)</td>
<td>(0.00166)</td>
<td>(0.00138)</td>
</tr>
<tr>
<td>OrderShare<sub>t</sub></td>
<td>0.13843***</td>
<td>−0.13693***</td>
<td>−0.14859***</td>
<td>0.17300***</td>
</tr>
<tr>
<td></td>
<td>(0.00836)</td>
<td>(0.00941)</td>
<td>(0.00998)</td>
<td>(0.00895)</td>
</tr>
<tr>
<td>∆Rate<sub>t</sub></td>
<td>0.01969*</td>
<td>−0.00150</td>
<td>−0.00261</td>
<td>−0.01144</td>
</tr>
<tr>
<td></td>
<td>(0.01059)</td>
<td>(0.01336)</td>
<td>(0.01474)</td>
<td>(0.01149)</td>
</tr>
<tr>
<td>log(Volume<sub>t</sub>)</td>
<td>−0.00161</td>
<td>0.01249</td>
<td>−0.01037</td>
<td>−0.00371</td>
</tr>
<tr>
<td></td>
<td>(0.01010)</td>
<td>(0.01148)</td>
<td>(0.01247)</td>
<td>(0.01133)</td>
</tr>
<tr>
<td>EffectiveSpread<sub>t</sub></td>
<td>−0.00003</td>
<td>−0.00014</td>
<td>−0.00016*</td>
<td>0.00026***</td>
</tr>
<tr>
<td></td>
<td>(0.00008)</td>
<td>(0.00009)</td>
<td>(0.00009)</td>
<td>(0.00009)</td>
</tr>
<tr>
<td>CIP<sub>t</sub></td>
<td>0.21698**</td>
<td>−0.16037</td>
<td>−0.27757**</td>
<td>0.19254*</td>
</tr>
<tr>
<td></td>
<td>(0.09655)</td>
<td>(0.09868)</td>
<td>(0.12070)</td>
<td>(0.10882)</td>
</tr>
<tr>
<td>VSTOXX<sub>t−1</sub></td>
<td>0.00019</td>
<td>−0.00073***</td>
<td>0.00023</td>
<td>0.00026</td>
</tr>
<tr>
<td></td>
<td>(0.00024)</td>
<td>(0.00025)</td>
<td>(0.00027)</td>
<td>(0.00025)</td>
</tr>
<tr>
<td>MarketBorrow<sub>k,t−1</sub></td>
<td>0.34354***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00969)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LimitBorrow<sub>k,t−1</sub></td>
<td></td>
<td>0.47831***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00998)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MarketLend<sub>k,t−1</sub></td>
<td></td>
<td></td>
<td>0.45202***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.00986)</td>
<td></td>
</tr>
<tr>
<td>LimitLend<sub>k,t−1</sub></td>
<td></td>
<td></td>
<td></td>
<td>0.35125***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.01007)</td>
</tr>
<tr>
<td>Fixed Effects</td>
<td>Bank & Month</td>
<td>Bank & Month</td>
<td>Bank & Month</td>
<td>Bank & Month</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.129</td>
<td>0.237</td>
<td>0.213</td>
<td>0.135</td>
</tr>
<tr>
<td>Observations</td>
<td>69481</td>
<td>69481</td>
<td>69481</td>
<td>69481</td>
</tr>
</tbody>
</table>