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Abstract

What drives short-term credit spreads is a very important question in credit mar-
kets, yet the empirical literature on the determinants of such spreads is rather thin
perhaps due to data limitations. Using a unique data set of secondary market
transaction prices of Chinese commercial papers, this paper provides a compre-
hensive study on the determinants of short-term credit spreads within the struc-
tural framework of credit risk modeling. Specifically, we propose a model of risky
debt pricing with rollover risk, jumps, and endogenous liquidity. Among other
things, this model allows us to decompose commercial paper yield spreads into a
credit component and a liquidity component in a unified manner. We find that
both credit and liquidity factors are important determinants of short-term credit
spreads and that on average, the proposed structural model can largely match
levels of commercial paper spreads in our sample.
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1 Introduction

What drives short-term credit spreads is a very important question in credit markets, es-

pecially given the role played by short-term corporate debt in the recent financial crisis.

However, in spite of a large literature on the determinants of credit spreads in general, the

empirical literature on short-term spreads is thin perhaps due to data limitations. One ex-

ception is the study by Covitz and Downing (2007), who examine a sample of commercial

paper (CP) issued by domestic U.S. nonfinancial firms and, based on regression analysis,

conclude that surprisingly, credit risk is the more important determinant of CP spreads than

liquidity. Although it is insightful, their study is not focused on no-arbitrage pricing of CP

and, in particular, not on rollover risk, however.1 Specifically, given that the data set used

in Covitz and Downing (2007) consists of mainly new issues in the primary market, an im-

portant and interesting question not addressed in their study and the literature is how much

of short-term yield spreads is due to credit risk or liquidity risk.

In this paper we shed light on the determinants of short-term corporate credit spreads

from at least two new perspectives. First, we employ a unique data set of secondary market

transactions in the Chinese commercial paper, the fastest growing CP market in the world.

Second, we quantify liquidity and default risk components in short-term spreads using the

well-known structural approach to credit risk modeling (Merton 1974). Specifically, we

propose a jump-diffusion structural model with rollover risk and endogenous liquidity that is

particularly suitable for modeling CP spreads. Among other things, this model allows us to

decompose yield spreads into diffusive and jump credit risk components as well as liquidity

component in a unified manner.

There are several reasons why we study the Chinese CP market. First, secondary market

transactions account for 78% of total daily transaction volumes in this market, whereas it is

1This is not surprising, given that their empirical analysis is done using a (pre-crisis) sample period
January 1998–October 2003.

1



less than 10% in the US market. This feature makes it possible to implement transaction-

based liquidity measures for the CP market. On the other hand, Covitz and Downing (2007)

only see the offer side of secondary market transactions and liquidity proxies they use are

limited to trade volume, dollar volume, and CP maturity. Second, the Chinese CP issuers

are heterogeneous in terms of creditworthiness, whereas almost all CP issuers in the US are

large, well-capitalized firms. Third, longer-term corporate debts, e.g. medium-term notes

(MTNs) and enterprise bonds (EBs), are traded in the same (interbank) market in China.

This provides an ideal setting to investigate how the relative importance of credit/liquidity

changes with the maturity.

To that end, we first conduct a regression analysis of CP yield spreads using credit risk-

related variables suggested by structural models, credit ratings, and seven liquidity measures

as examined in Schestag, Schuster, and Uhrig-Homburg (2016). We find that credit risk-

related determinants explain about 4-6% of CP spread variations. On the other hand, we

find that the liquidity measures have an unconditional R2 of 26.1% and an incremental R2

of 24.8%. That is, our results indicate that illiquidity is much more important than credit

risk in explaining variations in the CP spread in the Chinese market. This finding on the

relative importance of credit and liquidity proxies is different from the main finding of Covitz

and Downing (2007). One possible reason for this difference is that the samples of CP used

are very different. Another possible reason may have something to do with liquidity proxies

used in their study, e.g., CP maturity.

We then conduct a similar regression analysis using spreads on MTNs and EBs, which

have longer maturities than CP. We find that the credit-related variables indeed becomes

more important than liquidity in the determination of spreads on MTNs and EBs. Further-

more, we observe the same pattern between shorter (1–3 years) and longer (3–5 years) MTNs

and EBs.

Interestingly, our regression analysis results also provide evidence on potential role of
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structural credit risk models in the determination of short-term credit spreads. Specifically,

we find that the distance-to-default (Kealhofer 2003) subsumes equity volatility as well as

has incremental explanatory power for spreads over credit ratings. In addition, the regression

results indicate that jump risk matters.

As a result, we next examine the predictive power of structural models for short-term

credit spreads. We begin with the Black and Cox (1976) model, a simple, pure-diffusion

model of risky zero-coupon bonds that allows for default prior to bond maturity. As such,

it serves as the benchmark model in our empirical analysis. The consensus is that pure

diffusion-based structural models are unable to generate sufficiently high short-term spreads

consistent with levels of observed spreads. Indeed we find that the Black-Cox model implied

CP spreads have a mean of 0.32% and median of 0.0%, way below their empirical counterparts

of 1.53% and 1.34%, respectively. Furthermore, the model has substantial pricing errors: the

mean pricing error is -1.09% and the mean percentage pricing error is -66.87%. Nonetheless,

the model predicts lower-rating CP spreads better than higher-rating ones. For instance, the

mean percentage pricing error is -72.31% for AAA issues and -56.0% for AA issues.

We then consider the double-exponential jump diffusion (DEJD) model of risky debt,

which is used in Huang and Huang (2002, 2012) among others. This model can be considered

to be an extension of the Black-Cox model to include jumps in its underlying asset return

process. As expected, the DEJD model significantly improves the pricing performance.

For instance, incorporating jumps raises the average and median model-implied spreads

from 0.32% and 0.0% for the Black-Cox model to 1.07% and 0.48% for the DEJD model,

respectively. In terms of pricing errors under the DEJD model, the mean pricing error is

-0.70% and the mean percentage pricing error is -20.63% for the full sample. Nonetheless, the

ability of the DEJD model to predict short-term spreads is still poor, especially for those CP

issues with low observed spreads, as illustrated by the fact that the model-implied spreads

have a right-skewed distribution. One implication of this finding is that part of CP spreads
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may be related to liquidity.

To accurately quantify the incremental role of liquidity, we incorporate endogenous liq-

uidity into the DEJD model in the spirit of He and Xiong (2012). The resulting model can

be considered to be the He and Xiong (2012) model augmented with jumps. One important

feature of this model is that it takes into account rollover risk. Our empirical results show

that on average, this extended He-Xiong model largely explains CP spreads in our sample.

In fact, the average of predicted spreads in this model is 1.62%, higher than the average

observed spread of 1.53%. Moreover, the mean percentage pricing error is positive, around

10.31%, although the mean pricing error is still negative (-0.30%). However, the model still

underestimates the median CP spread. The model-implied CP spreads still have a right-

skewed distribution. Furthermore, the model over-estimates spreads in the right tail and

under-estimates spreads in the left tail, resulting in the positive mean percentage pricing

error of 10.31% for the full sample. That is, while incorporating endogenous liquidity im-

proves the pricing performance significantly, the resulting model suffers from the problem of

inaccuracy as described by Eom, Helwege, and Huang (2004).

To summarize, this paper contributes to the literature in three main aspects. First,

we provide a comprehensive study on the determinants of short-term credit spreads using

a unique data set of commercial paper secondary market transaction prices. Second, we

propose a structural model of credit risk with rollover risk, jumps, and endogenous liquidity.

Importantly, this model allows us to decompose CP spreads into a credit component—further

divided into the diffusion and jump components—and a liquidity component in a unified

manner. Third, we find that both credit and liquidity factors are important determinants

of short-term credit spreads and that on average, the proposed structural model can match

levels of CP spreads in our sample.

The remainder of the paper is organized as follows. Section 2 discusses related literature,

followed by Section 3, which describes the data we use. Section 4 introduces structural
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models of credit risk to be examined in study, including the proposed model with rollover

risk, jumps, and endogenous liquidity. Section 5 presents results from our empirical analysis.

Section 6 concludes.

2 Related Literature

This paper is most directly related to the literature on structural models of credit risk,

originated from Black and Scholes (1973) and Merton (1974). However, the paper departs

from this literature in two main aspects.

First, this paper contributes to the theoretical literature by proposing a new structural

model that incorporates rollover risk, endogenous liquidity, and jumps in the underlying asset

return process. There is a large theoretical literature on structural credit risk modeling (see,

e.g., Huang and Huang, 2012; Sundaresan, 2013; and references therein). For tractability and

comparison, we focus on three models with a flat default boundary—namely, the Black-Cox

model for zero-coupon risky debt, the DEJD model, and the proposed model that extends

the He-Xiong model to include jumps in the underlying asset return process.

The Black-Cox model is used in many studies, such as Bao (2009); Feldhütter and Schae-

fer (2018); Huang, Nozawa, and Shi (2018); Bai, Goldstein, and Yang (2019); Huang, Shi,

and Zhou (2019). In addition to Huang and Huang (2002, 2012), other examples using the

DEJD-based structural model include Cremers, Driessen, and Maenhout (2008); Bao (2009);

Chen and Kou (2009); Bai, Goldstein, and Yang (2019); Huang, Shi, and Zhou (2019).2 Stud-

ies using alternative structural models with jumps include Mason and Bhattacharya (1981);

Duffie and Lando (2001); Zhou (2001). We focus on the DEJD model in our study for an-

alytical tractability reasons. He and Xiong (2012); He and Milbradt (2014) consider both

rollover risk and bond illiquidity. Our proposed model builds on the former, a diffusion-based

2Kou (2002) develops the first DEJD-based equity option pricing model. Ramezani and Zeng (2007) use
the DEJD to model individual stock returns.
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model.

Second, while the empirical literature on structural models has mainly investigated

medium- or long-term corporate bonds and single-name credit default swap (CDS) con-

tracts, this paper focuses on short-term debt claims, commercial papers. Importantly, we

empirically examine the performance of the proposed structural model in predicting CP

spreads. The only other empirical study of individual CP issues that we are aware of is the

one by Covitz and Downing (2007). However, they do not include any structural models in

their analysis; they use equity volatility, credit ratings, and EDFs from Moody’s KMV as

credit proxies in their regressions.

The empirical literature on structural models can be divided into two streams. One

stream, going back to Jones, Mason, and Rosenfeld (1984), focuses on implications of struc-

tural models under the risk-neutral measure using alternative empirical methodologies. See,

e.g., Jones, Mason, and Rosenfeld (1984); Eom, Helwege, and Huang (2004); Ericsson and

Reneby (2005); Schaefer and Strebulaev (2008); Bao and Pan (2013); Bao and Hou (2017);

Culp, Nozawa, and Veronesi (2018); Huang, Shi, and Zhou (2019).

Another stream of research explores model implications under both the risk-neutral and

physical measures, such as studying the pricing performance of structural models by cali-

brating them to historical default losses. To resolve the credit spread puzzle documented

in Huang and Huang (2012), many studies propose various economic channels to account

for the credit component of yield spreads by incorporating additional sources of default pre-

mium. Examples include Bao (2009); Chen, Collin-Dufresne, and Goldstein (2009); Chen

(2010); Bhamra, Kuehn, and Strebulaev (2010); Christoffersen, Du, and Elkamhi (2017);

Du, Elkamhi, and Ericsson (2019); McQuade (2018); Shi (2019)

One of our main findings is that liquidity plays an important role in CP spreads. Kr-

ishnamurthy (2002) argues that CP spreads are essentially entirely due to liquidity, whereas

Covitz and Downing (2007) find that credit risk is more important than liquidity in the
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determination of CP spreads. There is a large empirical literature on corporate bond illiq-

uidity, however; see, e.g., Bao, Pan, and Wang (2011); Chen, Lesmond, and Wei (2007); Das

and Hanouna (2009); Han and Zhou (2016); Helwege, Huang, and Wang (2014); Longstaff,

Mithal, and Neis (2005); Mahanti, Nashikkar, Subrahmanyam, Chacko, and Mallik (2008);

Schestag, Schuster, and Uhrig-Homburg (2016); Bongaerts, De Jong, and Driessen (2017),

among others.

Our paper is also related to the new literature on the Chinese credit market. Amstad

and He (2019); Mo and Subrahmanyam (2018) provide a comprehensive overview of this

market. Chen, Chen, He, Liu, and Xie (2019) study a unique feature of the Chinese corporate

bond markets—where bonds with identical fundamentals are simultaneously traded on two

segmented markets that feature different rules for repo transactions—and document causal

evidence for the value of asset pledgeability. Geng and Pan (2019) focus on the segmentation

of the Chinese corporate bond market. Our paper differs from these studies in that we focus

on the Chinese CP market.

3 Data

3.1 Commercial Paper Data

In this study, we focus on the commercial paper data obtained from the China Foreign

Exchange Trade System (CFETS, also known as the National Interbank Funding Center)

over the period May 2014–December 2018.3 As a sub-institution directly affiliated to the

3According to CFETS, the transaction data before 2014 is relatively sparse and unreliable. Mo and
Subrahmanyam (2018) also find that in the early years of the CFETS data set, which goes back to 2006,
many data points have missing information on transaction prices for all types of bonds. Our sample period
starts after the first default of publicly issued bonds, the default of Shanghai Chaori Solar on its one billion
RMB bond. As such, we avoid the issue uncovered by Geng and Pan (2019) that, during the pre-default era,
corporate debt pricing in China is de-coupled from the issuer’s fundamental default risk (with wide spread
belief that bond investors will always be paid in full).
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People’s Bank of China, CFETS plays a similar role to FINRA in terms of serving and

monitoring the over-the-counter bond market. Our data set consists of end-of-day transaction

summaries of all corporate debts traded in the interbank market. Compared to standard

data sets on exchange-traded markets, i.g. CRSP Daily Stock File, it contains additional

information on daily volume-weight average price, which is the key variable in our calculation

of yield spreads and liquidity measures. This pricing data is matched to WIND IBQ database

to obtain the characteristics of each issue, including the name of the issuer, seniority, face

value, issuance date, maturity date, credit rating, and redemption features etc.

Table 1 provides summary statistics on trading activities in the Chinese commercial paper

market. We partition the data into six maturity categories: 1 to 30 days; 31 to 60 days; 61

to 90 days; 91 to 180 days; 181 to 270 days; and greater than 270 days. Within each of these

maturity categories, we compute the average daily shares of the total par amount traded

accounted for by primary and secondary transactions.4 We find that, over average, secondary

market transactions account for more than 78% of total daily transaction volumes. This

finding stands in stark contrast to the US CP market, in which primary market transactions

completely dominates. Indeed, this ratio for the US market is about 8.34% according to

Covitz and Downing (2007). The intense transaction activity on the Chinese CP market

is largely attributable to the regulatory constraint imposed on money market funds, i.e.,

the overall duration of their portfolio cannot exceed 120 days. In response, fund managers

actively adjust their portfolios to make full use of upper limit on the duration. Consequently,

while the average initial maturity is days, the trading volume of CPs with even less than 30

days to maturity is substantial and makes up about 9% of all secondary transactions.

Another notable difference from the U.S. CP market arises from the primary market.

Rather than concentrating on the shortest maturities—1 to 4 days as reported in Covitz and

Downing (2007)—primary issues in China has maturities evenly spread across ranges. If the

4Note that the shares do not sum to 100% in each panel because they are averages of daily shares.
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decision of initial maturity is partially driven by the clientele effect, this evidence suggests

that institutional investors in China are not excessively concerned about the secondary mar-

ket liquidity so that they do not aggressively demand extremely short maturities to create

de facto liquid.

3.2 Corporate Yield Spreads

For corporate bond i at month t, we calculate its end-of-month yield using the volume-

weighted average price of all trades within 7 days of the month-end (Bao and Pan, 2013).

As is the case of US market, CPs in China do not carry a coupon, though the interest

is calculated on an actual/365 basis. Therefore, credit spread can be simply measured

as the difference between the annualized CP yield and the default-free zero yield of the

same maturity. Following Covitz and Downing (2007), we use the yield curve derived from

repurchase agreements and relevant derivatives as the reference curve to calculate credit

spreads. Specifically, we collect from WIND the data of 7-day interbank fixing repo rate

(FR007) as well as swaps with a fixed rate versus it;5 the swap rates are means of the

bid and ask rates from major swap dealers’ quoted rates and cover the maturities from

one month to ten years. The term structure of risk-free zero rates is then constructed via

standard bootstrapping techniques. Finally, we remove upper 1% and lower 1% tails of the

credit spreads in order to avoid the influence of outliers (Campbell and Taksler, 2003).

Figure 1 presents the face-value-weighted average CP yield spreads for different rat-

ing/maturity categories. Since there are five rating agencies dominating the Chinese inter-

bank bond market, we extract rating information from them in order of market share. That

is, for each CP issue we first search for its issuer’s rating in Chengxin International Rating.

5Interbank fixing repo rates (including FR001, FR007 and FR014) are based on repo trading rate for
interbank market between 9:00-11:30 a.m. and released to the public at 11:30 a.m. on each trading day.
Among them, FR007 serves as the most important benchmark rate in the Chinese money market. Accord-
ingly, FR007-based swaps accounts for more than 70% of the trading volumes of all interest rate swaps, and
swaps based on 3-month SHIBOR constitute the second largest market.
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If it is missing, we use the rating from China Lianhe Rating and if this is missing as well, we

look up the rating from Dagong Global Credit Rating, and so on. This practice is adopted by,

i.g., (Dick-Nielsen et al., 2012) and switching to the lowest-rating principal (Collin-Dufresne

et al., 2001) makes little difference. The reason is that the rating industry in China is rather

homogenous and rating decisions across agencies offer little variation (Amstad and He, 2019).

As credit ratings in China are substantially inflated,6 it is not surprising to find that for

a given nominal rating, the average CP spread in China tends to be several times as high

as that in US, i.g., for AAA issuers it ranges from 82 basis points (1 to 60 days) to 122

basis points (301 to 365 days).Despite that the upward bias in rating assignment, the CP

yield spread does monotonically decrease with the credit rating in each maturity category.

As shown in Geng and Pan (2019), China’s domestic ratings contain information above and

beyond the issuer’s financial healthiness, such as implicit government guarantee. For this

reason, in the regression analysis we include credit rating as a default proxy, along with

credit measures based on structural models. Another important takeaway from Figure 1 is

that the term structure of yield spreads is generally upward sloping for all rating classes. If

money market funds engage in reaching-for-yield behavior, they are supposed to exhaust the

120-day upper limit on portfolio duration.

3.3 Liquidity Measures

There is no consensus on how to measure the liquidity of commercial paper markets. Due to

the sparseness of secondary market transactions, Covitz and Downing (2007) use issuance

size and time to maturity as liquidity proxies. On the other hand, studies on the corporate

bond market tend to employ liquidity measures based on intra-day and daily transaction

data. In this paper, we consider both types of liquidity variables to examine if market-based

6Amstad and He (2019) argue that AA is generally viewed by Chinese institutional investors “as the
lowest investment-grade level while this is BBB in global ratings.”
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liquidity measures contain additional information not captured by static or deterministic

proxies.

For the list of liquidity measures we refer to Schestag et al. (2016), who conduct a

comprehensive analysis of dozens of liquidity measures using data from the US corporate

bond market. As our data set is not organized in a transaction-by-transaction manner, we

are only able to implement what they term “low-frequency” measures based on daily data.

Table 2 shows that, based on the six transaction cost measures considered in this paper,

we obtain average bid-ask spread estimates between 46 and 168 basis points. Compared to

summary statistics for the same measures as reported by Schestag et al. (2016), the overall

trading cost in the Chinese CP market is generally comparable to that in the US corporate

bond market.

On the other hand, these transaction cost measures are closely correlated, with the pair-

wise correlation coefficient ranging from 13% to 80%. To examine if most of their relevant

information can be summarized by a low-dimensional vector, we perform a principal com-

ponent(PC) analysis in Panel B. We find that the first component loads somewhat evenly

on the six measures and explains 44% of their variations. Therefore, we follow Dick-Nielsen

et al. (2012) by defining a trading cost factor, TC, as the average of different measures. This

factor does not only serve as our primary liquidity variable in regression analysis, but also

provide a comprehensive and robust estimate of effective bid-ask spreads, which is a key

model input when we quantify the liquidity component in yield spread.

Regarding another important dimension of market liquidity, we consider two price im-

pact measures which are proposed by Amihud (2002) and Pástor and Stambaugh (2003).

Compared to transaction cost measures, these two measures incorporates the volume infor-

mation in a more direct way and thus may offer additional explanatory power for CP yield

spreads (Dick-Nielsen et al., 2012; Rossi, 2014; He et al., 2019).
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4 Structural Models of Credit Risk

In this section we introduce credit risk models to be used in our empirical analysis. We first

review the general framework that underlies these models. We then begin with the Black

and Cox (1976) model, the benchmark model in our empirical analysis (Section 4.1.1). We

next consider the double-exponential jump diffusion model, an extension of the Black-Cox

model to include jumps in the asset return process (Section 4.1.2). We then add liquidity

and obtain a jump-diffusion model with endogenous liquidity, which can be considered to be

the He and Xiong (2012) model augmented with jumps (Section 4.1.3). Lastly, we discuss

the implementation of these models (Section 4.2).

4.1 Modeling Framework

To place corporate default risk and debt market illiquidity into a unified framework, we

consider a firm maintaining a stationary debt structure. Specifically, the firm continuously

issues a constant amount of new zero-coupon debt with a initial maturity of T years; new

bond principal is issued at a rate f = F/T per year, where F is the total principal value

of all outstanding bonds. As long as the firm remains solvent, at any time t, the total

outstanding debt principal will be F and has a uniform distribution over maturities in the

interval (t, t + T ). It follows that the average maturity of the firm’s outstanding bonds is

T/2. Overall, this structure of zero-coupon debt rollover is particularly relevant to the CP

pricing.

Following the standard assumption for zero-coupon debts (Bao, 2009), we define the

recovery rate R as an exogenously specified fraction of the price of an otherwise identical

Treasury (non-defaultable) bond. The time-t price of a debt with τ years to maturity is thus

given by

dt(τ) = e−rτf [1− π(τ)(1−R)] , (1)
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where π denotes the risk-neutral default probability as derived from the model. We follow

Leland and Toft (1996) by postulating that the firm’s liability cannot be financed through

the sale of assets. In other words, if the firm’s cash flow is insufficient to cover the rollover

cost f − dt(τ), new equity will be issued.

4.1.1 The Black-Cox Model

The Black-Cox (1976) model provides a framework to price a corporate bond that can default

before maturity due to covenant violation. The idea is, if the firm value falls enough relative

to the face value of debt, firms may default even before the maturity of the debt. The firm

value threshold K at which firms choose to or are forced to default is called default boundary.

The dynamics of firm’s asset value At is specified as

dAt
At

= (r − δ)dt+ σdWt, (2)

where r denotes the risk-free rate, δ the payout rate, and σ the asset volatility. It follows

that the resultant risk-neutral default probability has the following expression (Bao, 2009):

πBC(τ) = N(h1(ν)) + (K/At)
2ν/σ2

N(h2(ν)), (3)

where

h1,2(ν) =
log(K/At)∓ ντ

σ
√
τ

,

ν =r − δ − σ2/2,

and N(·) is the cumulative standard normal density function. Based on Eq. (1), we have the

Black-Cox credit spread

csBC = − log (1− πBC(τ)(1−R))

τ
. (4)
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4.1.2 The Double-Exponential Jump Diffusion Model

It is well-known that purely diffusion models are unable to generate sizable credit spreads on

short-maturity bonds (see, for example, Duffie and Lando 2001). In this paper, we focus on

the double-exponential jump diffusion (DEJD) model which allows for analytically tractable

solutions,

dAt
At

= (r − δ)dt+ σdWt + d

[
Nt∑
i=1

(Zi − 1)

]
− λξdt

where N is a Poisson process with a constant intensity λ, and Y ≡ ln(Z1) has a double-

exponential distribution

f(y|pu, pd, ηu, ηd) = puηue
−ηuy1{y≥0} + pdηde

ηdy1{y<0}

It follows that the mean percentage jump size ζ is given by

ζ = E
[
eY − 1

]
=

puηu
ηu − 1

+
pdηd
ηd + 1

− 1.

The default-triggering mechanism and default recovery rule are assumed to be the same

as those in the Black-Cox model. Therefore, the impact of discontinuous movements in

the asset return is mainly reflected in the modified function of default probability, which

is denoted by πJ . We can calculate πJD numerically through an inverse Laplace transform

(see, e.g., Huang and Huang 2012). Replacing πBC with πJD in Eq. (4) results in the DEJD

model credit spread csJD.

4.1.3 The He-Xiong Model with Jumps

To quantify the liquidity component in CP yield spreads, we model endogenous liquidity

through a market structure similar to Amihud and Mendelson (1986) and He and Xiong

(2012). That is, we assume that each bond investor is hit by a liquidity shock with probability

ξ. Liquidity shocks bring about liquidity needs, which has to be covered by selling the bond

14



holding in the illiquid secondary market. As such, the (fractional) transaction cost k enters

into bond pricing through its product with the liquidity shock intensity

dt(τ) = e−(r+ξk)τf (1− π(τ)) + e−rτfRG(ξk, τ), (5)

where G(z, ) denotes the Arrow-Debreu default claim with the discount rate equal to z. If

the asset value process follows Eq. (2), we have π = πBC and G = GBC , where

GBC(ξk, τ) =(K/At)
(ν−g(ξk))/σ2

N (h1(g(ξk))) + (K/At)
(ν+g(ξk))/σ2

N (h2(g(ξk))) ,

g(ξk) =
√
ν2 + 2ξkσ2.

As illustrated in He and Xiong (2012), ξk represents the adjustment made to the discount

rate and thus determines the liquidity premium in corporate yield spreads. If bond investors

are not exposed to liquidity shocks (ξ = 0), G̃(τ) degenerates to πBC(τ) and Eq. (5) coincides

with dBC(τ).

Considering the crucial importance of jump risk to short-term credit spreads, we set

π(τ) = πJD(τ) in our model-based spread decomposition to fully account for the credit

component. Accordingly, G̃(τ) needs to be computed numerically as shown in Huang, Shi,

and Zhou (2019), and the corresponding model spread is denoted by csHXJ . It follows that

the incremental contribution of liquidity risk to yield spreads is given by csHXJ − csJD.

4.2 Implementation

We start with the calculation of Black-Cox credit spreads, which requires estimates of (1)

market value of the firm’s asset and (2) asset volatility. Following Bao (2009), we extend

the estimation method of Jones, Mason, and Rosenfeld (1984) to the Black-Cox model to

identify the values of At and σ.7 Specifically, by matching model-implied values of market

7Applications of this estimator to the original Merton model include Campbell et al. (2008), Hillegeist
et al. (2004) and Bai and Wu (2016).
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leverage and equity volatility to observed values, we obtain the following equation set:

Lt =
F

Et(At, σ) + F
, (6)

σE =
∂E

∂A

At
Et
σ. (7)

where L is termed quasi-market leverage by Schaefer and Strebulaev (2008), and σE denotes

the equity volatility. The modeled equity value E(At, σ) is derived as

Et(At, σ) = At −
[
KGBC −

FR

rT
(GBC(r, T )− e−rTπBC(T ))

]
−Dt(At, σ), (8)

where the three terms on the right-hand side capture the unlevered value of the firm, the

deadweight loss of default and the total market value of outstanding debt, respectively. The

solution for Dt follows Leland and Toft (1996),

Dt =

∫ T

0

dt(τ)dτ,

=
F

rT

[
1−GBC(r, T )(1−R)− e−rT (1− πBC(T )(1−R))

]
.

Following the standard established by Moodys KMV (Crosbie and Bohn, 2003), the

default boundary K is measured as the firm’s book measure of short-term debt, plus one

half of its long-term debt, based on its quarterly accounting balance sheet. This specification

of default boundary is especially suitable for the pricing of default risk at a short horizon,

which explains why it was initially employed in KMV’s Expected Default Frequency (EDF)

measure.8 Studies that have used the same specification include Eom, Helwege, and Huang

(2004); Vassalou and Xing (2004); Duffie, Saita, and Wang (2007).

Estimation of jump parameters {λ, pu, ηu, ηd} involves estimating their counterparts un-

der the physical measure {λP, pPu, ηPu, ηPd} and converting them to the risk-neutral measure.

We adopt the specification of Huang and Huang (2012) that the transformation from P-

8The EDF measure initially focused on one-year default probabilities.
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measure jump parameters to Q-measure ones is controlled by a single parameter

γ =
λζ

λPζP
.

Since a joint estimation of all these parameters is fairly complicated and might not be

numerically robust, we identify them separately by carrying out the following scheme.

First, we use index option prices to identify the jump risk premium parameter γ. Until

December 23, 2019, options on the SSE 50 Index ETF were the only option product traded

in mainland China. To make the estimation of γ independent of other jump parameters, we

assume that SSE 50 Index returns directly follow a DEJD process

dSt
St

=rdt+ σsdWt + d

[
Ns,t∑
i=1

(Zs,i − 1)

]
− λsζsdt (9)

=µsdt+ σsdW
P
t + d

NP
s,t∑

i=1

(ZP
s,i − 1)

− λPsζPs dt. (10)

In the spirit of Eraker (2004), we employ a Markov Chain Monte Carlo( MCMC) estimator

for joint options and index returns data. To reduce the computational burden, we follow

Pan (2002) by only selecting only near-the-money short-dated option contracts into our

estimation. As such, we obtain an estimate of γ at 2.30, along with the estimates of other

parameters in Eqs. (9) and (10).

Next, we use high-frequency equity returns to pin down the values of λ and pu for each

debt issuer. To be specific, we apply the jump detection method of Tauchen and Zhou

(2011) to five-minute returns on individual stocks.The intra-day equity data is retrieved from

CSMAR China Security Market Trade & Quote Research Database, and we eliminate days

with less than 60 trades. Once the individual jump size is filtered out, we can easily estimate

the jump intensity and the probability of upward jumps. We find that on average CP issuers

have 3.95 jumps per year, and upward jumps are slightly more likely than downward jumps,

with the mean of pu equal to 0.53.

Finally, we adopt the assumption of Huang and Huang (2012), ηu = ηd = η, when es-
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timating parameters on the jump size. In our estimation of eta, we follow Bao (2009)’s

procedures in the sense that (1) we use the moment condition equalizes the empirical and

model-implied fourth moments of equity returns; (2) we do not adjust the estimate of dif-

fusion volatility σ for the inclusion of jumps, such that the differential csJD − csBC purely

reflects the incremental contribution of the additive jump component.9

The implementation of He-Xiong Jump Model (HX J Model hereinafter) requires esti-

mates of the fractional trading cost k and liquidity shock intensity ξ. The former can be

easily calibrated to our transaction cost measure TC, which varies across issues and over

time. The latter is identified by targeting the average turnover rate in the Chinese CP

market, as in the calibration analysis of He and Xiong (2012). Over our sample period, the

turnover averages at 64.1%, which is close to the 70% estimated by He and Milbradt (2014)

with the TRACE database for the US corporate bond market.

5 Empirical Results

5.1 Determinants of CP Spreads: Evidence from Regressions

Table 3 reports results from panel regressions of CP yield spreads on credit-risk related

variables. Model M1 considers three key variables as suggested by the original Merton model:

the risk-free rate, leverage, and equity volatility (Ericsson et al., 2009). M2 moves forward

toward the Merton model by examining the distance-to-default (DD), a nonlinear function

of these three variables which in theory directly determines the default probability. The

results from these two regression models show that individual equity volatility is significantly

positive and DD is significantly negative. M3 combines M2 with M1 and indicates that DD

9According to Cremers et al. (2008), the inclusion of double-exponential jumps has minimum impact on
the estimation of diffusion volatility, merely decreasing its estimate from 19.95% to 19.88%.
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subsumes equity volatility, which lends support for the functional form of model spread.

Interestingly, augmenting M3 with the credit rating variable (Ratingi,t) slightly strength-

ens the impact of DD (model M4). This result implies that DD contains incremental infor-

mation about spreads over credit ratings, consistent with Campbell and Taksler (2003) to

some extent. M5 and M6 consider other explanatory variables included into the benchmark

regression of Collin-Dufresne et al. (2001). Including the slope of yield curves and the equity

market return (CSI300t) does not drive out DD and Ratingi,t (model M5). Finally, the

option-implied volatility (CIV IXt) and the slope of its ”smirk” (Jumpt) are used as proxies

for variations in volatility and jump magnitude/probabilitie. Augmenting M5 with these

two variables raises the adjusted R2 substantially from 4.8% to 6.4%. Especially, Jumpt is

highly significant with the expected sign, consistent with the notion that jumps are essential

for structural models to generate plausible spreads for short-maturity debts (Zhou, 2001).

Given the moderate R̄2 of 6.4% in M6, we now examine potential explanatory power

of bond market illiquidity for spreads. Univariate regression results reported in Table 4

indicate that all six transaction cost measures are significantly positive. In particular, they

coincide with the finding of Schestag et al. (2016) that Roll (1984)’s measure and Hasbrouck

(2009)’s Gibbs measure deliver the best performance among low-frequency measures, as

each of them captures more than 15% of variations in CP spreads. On the other hand, the

Pastor-Stambaugh measure for price impact is associated with an insignificant coefficient

with a counter-intuitive sign.

To assess the relative importance of liquidity- and credit-related variables in explaining

the CP spreads, we estimate nine regression models and report the results in Table 5. M1

starts with four traditional liquidity proxies considered in Covitz and Downing (2007). We

find that, while OfferAmti and InitMati are significant with expected signs, the four

proxies explain little variation in the spread with an R̄2 of merely 0.7%. In contrast, our

proposed measure for trading cost, TCi, is significantly positive with an R2 of 21.4% (M2),
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which is greater than any individual measure. Augmenting M2 with Amihudi raises the R̄2

to 26.1% (M3). Augmenting M3 with the four traditional liquidity proxies has only marginal

impact on R̄2 and renders OfferAmti and InitMati insignificant. This evidence suggests

that conclusion of Covitz and Downing (2007) on the role of liquidity is likely driven by their

focus on static/deterministic measures.

Given the results in Table 3, we use DDi and Ratingi as our baseline credit variables

and consider the incremental contribution of Jumpt as well. M5 shows that both DDi and

Ratingi are significant with expected signs albeit with a low R̄2 of 3.4%. Augmenting M5

with TCi and Amihudi weakens the impact of DDi and Ratingi although the two credit-

related variables are still significant (M6). Interestingly, M6 has an R̄2 of 26.1%, much higher

than that of M5 and the same as that of M3. In other words, the results from M2 through M6

indicate that the liquidity proxies are much more important than the credit-related variables

in explaining the variation in the CP spread. The results from M7 and M8—M5 and M6

augmented with Jumpt respectively—confirm this conclusion. Still, including Jumpt raises

the R̄2 significantly percentage-wise, increasing R̄2 = 3.4% for M5 to 4.1% for M7 (a 20%

increase in the relative term). Lastly, we augment M8 with more market-wide variables,

including Slopet, CSI300t, CIV IXt, TEDt, along with Y earEng and SCP . Among these

variables, only CSI300t, CIV IXt are significant (M9). Moreover, M9 has an R̄2 of 27.5%,

almost the same as that of M8 (27.2%).

5.2 Determinants of Spreads on MTNs and EBs

Intuitively, credit-related variables become more important in determining the spreads of

longer-maturity corporate debts. In this subsection we repeat the analysis of Section 5.1

using MTNs and EBs to examine if the relative importance of firm’s fundamentals increases

with the debt maturity.

Consider short-term MTNs and EBs with maturities of 1–3 years first. We make several
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observations from the results reported in Table 6. First, while both TCi and Amihudi

are highly significant, the former alone has an R2 of 24.0% (M1) and the latter has an

incremental R2 of 0.8% only (M2). Namely, Amihudi becomes less important than it is

for the CP spreads (see M2 and M3 in Table 5). Second, the credit variables, DDi and

Ratingi, are both significant with expected signs and together have an R̄2 of 9.3% (M3),

much higher than their counterpart for CP spreads (3.4% of M5 in Table 5). Furthermore,

DDi and Ratingi together have a marginal R2 of 0.03 (more than 10% increase) over TCi

and Amihudi (M4 and M2). Third, Jumpt is highly significant with correct sign but its

incremental explanatory power over DDi and Ratingi becomes weaker than it does for CP

spreads. For instance, including Jumpt raises the R̄2 of 9.3% for M3 to 9.8% for M5, a 5%

increase in the relative term (as opposed to a 20% increase in the case of CP spreads). Fourth,

the results from M6 and M7 show that Slopet, CSI300t, CIV IXt, TEDt, Y earEng and

SCP together add little incremental explanatory power over (TCi, DDi, Ratingi, Jumpt).

To summarize, the main takeaway from Table 6 is that when we move from CP to longer

maturity, short-term MTNs and EBs, the credit variables become relatively more important

than the liquidity proxies but the jump risk becomes less important relative to the other

credit variables.

Next we repeat the above analysis using intermediate MTNs and EBs with maturities of

3–5 years and report the results in Table 7. We make the following observations. First, a

comparison of M1 and M2 with their counterparts for short-term MTNs and EBs (Table 6)

indicates that while TCi is equally important for intermediate-term MTNs and EBs as for the

short-term ones, Amihudi is no longer significant conditional on TCi (M2). Second, DDi and

Ratingi are both highly significant with expected signs and together have an R̄2 of 37.8%,

higher than that of TCi (M1) and especially, much higher than their counterpart for either

CP spreads (3.4% of M5 in Table 5) or short-term MTNs and EBs (9.3% of M3 in Table 6).

Third, Jumpt is only marginally significant now and has very little incremental explanatory
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power over either DDi and Ratingi (M5) or them along with TCi (M6). Fourth, TCi,

DDi, and Ratingi together have an R̄2 of 42.7% (M4); adding those market-wide variables

raises the R̄2 marginally. In summary, Table 7 provides more evidence supporting the main

takeaway from Table 6.

To better illustrate the relative importance of credit- or liquidity-related proxies in ex-

plaining yield spreads, Figure 2 plots their R̄2’s for CPs, short-maturity MTNs and EBs,

and intermediate-maturity MTNs and EBs, respectively. Credit-related variables considered

include DDi and Ratingi with (in blue) and without Jumpt (in navy blue). Liquidity-related

variables considered include TC with (in yellow) and without Amihudi. The main takeaway

from the figure is that while the liquidity proxies together have a relatively stable R̄2 of

around 25%, the credit-risk proxies have an increasing R̄2 as maturities of issues become

longer.

5.3 Pricing Performance of Structural Models

The regression-based evidence in Sections 5.1 & 5.2 sheds light on the role of credit and

liquidity in capturing spread variations. However, since there is a nontrivial overlap in the

information covered by those credit and liquidity variables, we are unable to perform a yield

spread accounting without a structural framework. In this subsection, we aim to quantify

the contributions of default and liquidity risks to the level of CP yield spreads. To this end,

we examine the pricing performance of the three structural models as reviewed in Section 4.

We implement each of the three structural models as described in Section 4.2 and calculate

the model-implied spread of every CP issue in our final sample. Before analyzing the pricing

performance of these models, we examine the empirical distributions of observed CP spreads

as well as the model-implied spreads, which are illustrated for both the full sample and the

subsamples by credit ratings in Table 8.

Consider the full sample first. The consensus is that pure diffusion-based structural
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models are unable to generate sufficiently high short-term spreads consistent with levels

of observed spreads. Clearly, the Black-Cox (pure-diffusion) model substantially underes-

timates the CP spread, although this problem is relatively less severe for CPs with super

high spreads on the right tail. For instance, the Black-Cox model implied CP spreads have

a mean of 0.32% and median of 0.0%, way below their empirical counterparts of 1.53% and

1.34%, respectively. Note that the model-implied spreads are severely right-skewed. This

fact indicates that judging the performance of the model by the mean predicted spread alone

may lead to a misleading conclusion.

As expected, the DEJD model significantly improves the pricing performance, especially

at the right tail. For instance, the Black-Cox, DEJD-implied, and observed spreads at the

90th percentile are 0.96%, 2.62% and 2.88%, respectively. Also, incorporating jumps raises

the average and median model-implied spreads from 0.32% and 0.0% for the Black-Cox

model to 1.07% and 0.48% for the DEJD model, respectively. However, the DEJD model-

implied spread at the left tail are still substantially below their empirical counterparts. For

example, the DEJD-implied and observed spreads at the 10th percentile are 0.06% and

0.45%, respectively. Moreover, the DEJD model-implied spreads are still right skewed. One

implication of these findings is that part of CP spreads may be related to liquidity.

Consider next the extended He and Xiong (2012) model with jumps, which is proposed

in this paper. Recall that this model can also be considered to be an extension of the

DEJD model to include endogenous liquidity. Note first from the top panel of Table 8

that the average model-implied spread is 1.62%, higher than the average observed spread

of 1.53%. The model-implied spreads at the right tail exceed their observed counterparts

even more: the model-implied and observed spreads at the 90th percentile are 3.43% and

2.88%, respectively. However, the model-implied median spread and especially, those at the

right tail are substantially below their empirical counterparts. Moreover, the extended He-

Xiong model-implied spreads are still right skewed. That is, while incorporating endogenous
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liquidity improves the overall pricing performance significantly, the resulting model may still

under-estimates those “safer” CP spreads but over-estimates spreads of those “more risky”

CP issues. To some extent, this problem is analogous to what is noted in Eom, Helwege,

and Huang (2004) about some other structural models that they use to predict corporate

bond yield spreads. One caveat to keep in mind, however: the model-implied and observed

spreads at a given percentile may come from different CP issues.

The results for four different subsamples by credit ratings, reported in Table 8, provide

similar patterns as those for the full sample.

We now proceed to examine the pricing errors of these three structural models, which

are reported for both the full sample and the subsamples by credit ratings in Table 9. We

make three observations from the mean pricing errors reported in panel A. First, the three

models all have negative pricing errors, regardless of the credit ratings considered. The

mean pricing error ranges from -2.11% for the “Other” group from the Black-Cox model

to -0.17% for the AAA group from the extended He-Xiong model (the HX-Jumps model).

Second, adding jumps and then endogenous liquidity to the benchmark Black-Cox model

each separately reduces the magnitudes of the mean pricing errors, controlling for credit

ratings. Third, under a given model, the higher the credit rating, the lower the magnitude

of the mean pricing error. Fourth, the average pricing error of the HX-Jumps model is

statistically insignificantly different from zero for the full sample as well as the AAA and

AA+ subsamples; namely, on average the model can match the levels of CP spreads for the

full sample, the AAA group, or the AA+ subsample.

The mean percentage pricing errors, reported in panel B of Table 9, show different pat-

terns from the mean pricing errors in panel A. First, the mean percentage pricing error is

negative except for the full sample, and the AAA and the AA+ subsamples, all under the

HX-Jumps model. The mean percentage pricing error ranges from -72.31% for the AAA

group under the Black-Cox mode to 19.88% for the AAA group under the HX-Jumps model.
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Second, adding jumps and then endogenous liquidity to the benchmark Black-Cox model

each separately reduces the magnitudes of the mean percentage pricing errors except for the

AAA group, whose mean percentage error is -17.46% under the DEJD model and 19.88%

under the HX-Jumps model. Third, under a given model, there is no monotonic relation

between the magnitude of the mean percentage pricing error and the credit rating. Fourth,

the mean percentage pricing error of either the DEJD model or the HX-Jumps model is not

statistically significantly different from zero, regardless of the rating categories except for

the smallest subsample, the “Other” subsample.

Overall, there are four main takeaways from Table 9. First, the Black-Cox model substan-

tially under-estimates the CP spreads, regardless of the credit ratings considered. Second,

augmenting the Black-Cox model with jumps significantly improves the model performance,

especially for AA–AAA groups on a relative basis. The resulting DEJD model, however,

still under-estimates the CP spreads across all rating groups. Third, augmenting the DEJD

model with endogenous liquidity substantially improves the pricing performance. In fact, on

average, the resulting HX-Jumps model can match the CP spread for the full sample as well

as the AAA and AA+ subsamples. Fourth, both the DEJD and HX-Jumps models suffer

from the accuracy problem: they both have high mean percentage pricing errors although

they are statistically insignificant except for the “Other” rating group.

6 Conclusions

Although short-term corporate debt played an important role in the recent financial crisis,

there are very few studies on the determinants of short-term credit spreads. In this paper we

examine the determinants of commercial papers using a unique data set of secondary market

transactions in the Chinese commercial paper market. We propose and empirically test a

structural credit risk model with rollover risk, jump risk, and endogenous liquidity, which
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is particularly suitable for predicting commercial paper spreads. Among other things, this

model allows us to decompose CP spreads into a credit component and a liquidity component

in a unified manner.

We find that credit and liquidity risks are both important in the determination of short-

term yield spreads and that the former is more important for longer-maturity debt. We

also find that the Black-Cox (1976) pure-diffusion model substantially under-estimates CP

spreads, regardless of credit ratings considered. Not surprisingly, augmenting the Black-Cox

model with jumps significantly improves the model performance, especially for AA–AAA

groups on a relative basis. However, the resulting model—the double-exponential jump-

diffusion (DEJD) model of credit risk—still under-estimates CP spreads across all rating

groups. Incorporating endogenous liquidity into the DEJD model substantially improves the

model performance except for the AAA group. Furthermore, the resulting model—the He-

Xiong (2012) model with jumps—on average, can match the level of CP spreads for either

the full sample or the AAA and AA+ subsamples. However, this extended He-Xiong model

still has high average percentage pricing errors—which are positive for the full, AAA or AA+

samples but negative for AA and lower rating groups—even though they are insignificantly

different from zero.

Overall, this paper provides a comprehensive study on the determinants of short-term

credit spreads using secondary transaction data and a structural model with both rollover

risk and endogenous liquidity. Our results indicate that to better capture the behavior of

short-term credit spreads, we need to incorporate a liquidity component that can help raise

spreads on the riskiest issues without raising them too much for the safer issues.
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A The Chinese Commercial Paper Market

In the Chinese bond market, commercial papers are widely used by non-financial firms for

short-term financing.10 The standard commercial papers were first introduced to the market

in May 2005, followed by the introduction of the super commercial papers in 2010. The

major differences between these two types of commercial papers are the maturity at issuance

and borrowing capacity. The value of the outstanding standard commercial paper, with a

maturity of less than one year, cannot exceed 40% of the issuing firm’s net asset. There is

no such limit for super commercial papers, for which the maturity is restricted to less than

270 days. Since the borrowing cost of commercial papers is typically lower than that of bank

loans with similar maturities, and there is no explicit restriction on the usage of funds raised,

the market for commercial papers grows fast since its inception. In 2005, 61 firms raised

142.4 billion RMB with commercial papers. By the end of 2018, the outstanding bond value

reached 1.9 trillion RMB, which accounted for 2.3% of the overall bond market.

A.1 Registration and issuance

Commercial papers are issued and traded in the interbank bond market.11 This is an OTC

market, only allowing the participation of institutional investors such as commercial banks,

rural credit cooperatives, security firms, insurance companies, mutual funds, and foreign

institutions. The market was established in 1997 and regulated by China’s central bank,

the People’s Bank of China. The market significantly dominates bond issuance and trading

in China, as the balance of outstanding bonds amounted to 76 trillion (89% of the bond

market) at the end of 2018.12

10Security firms are also allowed to issue commercial papers. However, it is subject to different regulations,
and the market size is relatively small. We exclude them from our analysis.

11See Amstad and He (2019) for an in-depth overview of the interbank bond market in China.
12Another important bond market in China is the exchange market, i.e., the Shanghai Stock Exchange

and the Shenzhen Stock Exchange. The exchange market is regulated by the China Security Regulatory
Commission, the counterpart of SEC in China. A variety of bond products, including corporate bonds,
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Bond issuance in the interbank bond market is based on a registration system. The

National Association of Financial Market Investors (NAFMII), a self-regulation industry

organization under the central bank’s guidance, makes the registration rules and oversees the

registration process. With a book building process, the offering interest rate is determined by

underwriters based on bids collected from market investors. Since the maturity is quite short,

typically firms issue commercial papers to repay bank loans or other bonds, and fund their

working capitals. In 2018, 827 firms, including both SOEs and privately-owned enterprises,

issued 2,918 commercial papers, raising 3.1 trillion RMB. This accounted for 7.2% of the

total bond issuance in the Chinese market. The maturity of an average bond was 0.66 years,

and it was offered at 4.94% per year.

A.2 Trading and investors

The interbank bond market is an OTC market in nature. However, the China Foreign

Exchange Trade System offers a centralized trading system for bonds including commercial

papers. Similarly, the Shanghai Clearing House provides unified depository and clearing

services to commercial paper investors. All the participants in the interbank bond market

are allowed to invest in commercial papers. As of the end of 2018, the largest investor was

non-legal-person investor (mutual funds, wealth management products, trusts, etc.), which

held 69.9% of the outstanding commercial papers. The second and third largest investors

were commercial banks and security firms, holding 23.1% and 4.3%, respectively. Commercial

papers are among the most liquid products in the bond market. In 2018, the spot transaction

volume amounted to 7.0 trillion RMB, which could be translated to an annual turnover rate

of 4.1.

government bonds, and financial bonds, is available on this market. By the end of 2018, the value of
outstanding bonds in the exchange market is 9.2 trillion RMB.
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A.3 Credit rating and defaults

NAFMII asks for standard commercial paper issuers to be rated AA- or above. For super

commercial papers, two ratings from different rating agencies are mandatory with one at

AA or above. Note that the distribution of the Chinese rating scale is upward skewed, these

rating requirements seems not to be very binding in many cases. Among the 2,918 bonds

issued in 2018, 51.6% were rated AAA, 34.5% were rated AA+, and 13.5% were rated AA.

Only 5 bonds (0.2%) are rated AA-. Credit enhancements were also seldom seen as 36 (1.2%)

issuances provided enhancements like guarantees or collaterals. Though Chinese regulators

are striving to eliminate implicit government guarantees in the bond market, the overall

bond default rate remains relatively low in China. It is the same case for commercial papers.

The first real default in the commercial paper market occurred in November 2015, as Sunnsy

Group failed to repay its 2 billion RMB bond. From 2014 to 2018, only 62 commercial papers

of 42.2 billion outstanding amount defaulted, representing a default rate of 0.53% in terms

of bond number and 0.29% in terms of value. Moreover, 10 of these defaulted bonds of 4.6

billion outstanding amount were fully recovered by November 2019.
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Table 1: Trading Activity in the Chinese CP Market

This table reports average trading volumes for different segments in the Chinese commercial
paper market, as well as their average shares of total daily trading volumes. The “Primary
Market” includes new issues, and the ”Secondary Market” is for paper traded after its
issuance date in the primary market. The volumes are reported in billion RMB and shares
are expressed in percent. The figures below each average volume/share are the corresponding
standard deviations.

Days to Maturity

1-30 31-60 61-90 91-180 181-270 271-360 Sum

Primary Market Volume (bn)

Mean 2.27 2.34 2.27 3.06 6.25 3.31 19.50

SD 2.62 2.23 2.58 3.26 4.59 2.94

% of Total

Mean 4.08 4.49 4.35 5.96 11.93 6.95 37.76

SD 4.8 4.01 4.31 6.46 8.77 6.99

No. Issues 1.17 1.12 1.31 1.76 4.73 3.69 13.78

Secondary Market Volume (bn)

Mean 3.39 3.61 3.59 10.64 13.39 5.97 40.60

SD 2.09 2.22 2.37 6.13 7.63 3.78

% of Total

Mean 6.72 7.18 7.03 20.34 25.37 11.95 78.58

SD 3.98 4.02 3.99 7.2 8.51 7.25

No. Issues 23.85 23.1 20.22 60.83 61.46 34.37 223.82

35



Table 2: Transaction Cost Measures and Effective Bid-Ask Spread

Panel A shows descriptive summary statistics (in basis points) for our
low-frequency transaction cost measures: Roll (1984)’s measure, Hasbrouck
(2009)’s measure, Effective tick (Goyenko, Holden, and Trzcinka 2009; Holden
2009), Fong, Holden, and Trzcinka (2017)’s measure (FHT ), High-low spread
estimator (HLsprd) (Corwin and Schultz 2012), and Close-High-Low estima-
tor (CHL) (Abdi and Ranaldo 2017). The comprehensive measure for effective
bid-ask spread, TC, is defined as an equally weighted linear combination of
these six measures. Panel B shows the principal component analysis loadings
on each of the six measures, along with the cumulative explanatory power of
the components. Monthly liquidity measures are computed based on daily
transaction prices and volumes provided by CFETS.

Panel A: Descriptive statistics (bp)

Mean 10% 25% 50% 75% 90%

Roll 75 0 3 44 103 182

Hasbrouck 80 7 16 34 76 160

EffectiveTick 46 2 8 22 50 110

FHT 85 12 23 46 94 163

HLsprd 48 0 1 4 29 118

CHL 168 8 25 60 151 384

TC 75 10 21 45 89 158

Panel B: Principal component loadings

PC1 PC2 PC3 PC4

Roll 0.45 −0.41 0.01 0.12

Hasbrouck 0.42 −0.04 0.03 −0.36

EffectiveTick 0.35 0.26 0.07 −0.46

FHT 0.44 0.03 0.02 −0.31

HLsprd 0.31 0.40 −0.22 0.51

CHL 0.32 0.45 −0.19 0.33

Cumulative 0.44 0.63 0.77 0.87
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Table 3: Regression of CP Spreads on Credit Risk Determinants

This table reports results from six specifications of regressions of commercial pa-
per (CP) spreads on credit risk related variables. Explanatory variables used in-
clude the risk-free rate (rft), firm-i’s leverage ratio (Levi,t), equity volatility (σEi,t),
distance-to-default (DDi,t), credit ratings (Ratingi,t), the slope of yield curves
(Slopet), the equity market index (CSI300t), the option-implied volatility, the
slope of its “smirk” (Jumpt).

Dependent variable: CP spreads

M1 M2 M3 M4 M5 M6

Intercept 0.009 0.023∗∗∗ 0.012 0.012 0.012 0.012

(0.68) (5.22) (0.87) (0.65) (0.68) (0.63)

rft 0.244 0.531∗∗ 0.303 0.451∗ 0.565

(0.97) (2.11) (1.34) (1.74) (1.35)

Levi,t −0.004 −0.009 −0.007 −0.008 −0.010

(−0.59) (−1.04) (−0.67) (−0.71) (−0.76)

σEi,t 0.021∗∗∗ 0.009 −0.009 −0.016 −0.021

(2.75) (0.97) (−0.84) (−1.24) (−1.64)

DDi,t −0.002∗∗∗ −0.003∗∗∗ −0.003∗∗∗ −0.004∗∗∗ −0.004∗∗∗

(−2.66) (−2.60) (−2.93) (−3.01) (−3.06)

Ratingi,t 0.010∗∗∗ 0.011∗∗∗ 0.011∗∗∗

(9.19) (10.17) (9.07)

Slopet −0.501 −0.590

(−0.88) (−0.72)

CSI300t −0.061∗ −0.081∗∗

(−1.70) (−1.99)

CIV IXt −0.046

(−1.52)

Jumpt 0.125∗∗∗

(3.56)

R̄2 0.005 0.037 0.044 0.043 0.048 0.064

Obs 5755 5755 5755 5755 5755 4920
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Table 4: The Explanatory Power of Liquidity Measures for CP Spreads

This table reports results from regressions of commercial paper (CP) spreads on a variety of illiq-
uidity measures. They include six transaction cost proxies: measures of Roll (1984) and Hasbrouck
(2009), the effective tick of Goyenko, Holden, and Trzcinka (2009); Holden (2009), the Fong, Holden,
and Trzcinka (2017) measure (FHTi,t), the Corwin and Schultz (2012) high-low spread estimator
(HighLowi,t), and the Abdi and Ranaldo (2017) close-high-low estimator (CHLi,t); and two price
impact proxies: Amihudi,t and PSi,t, representing those of Amihud (2002) and Pástor and Stam-
baugh (2003), respectively.

Dependent variable: CP spreads

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 0.017∗∗∗ 0.008∗∗ 0.012∗∗∗ 0.011∗∗∗ 0.016∗∗∗ 0.011∗∗∗ 0.017∗∗∗ 0.018∗∗∗

(11.92) (2.33) (5.05) (3.41) (12.54) (3.06) (11.99) (9.96)

Rolli,t 3.309∗∗∗

(2.90)

Hasbroucki,t 3.672∗∗

(2.48)

EffT icki,t 8.225∗∗

(2.30)

FHTi,t 5.871∗∗

(2.38)

HighLowi,t 2.934∗∗∗

(6.67)

CHLi,t 4.279∗∗

(2.07)

Amihudi,t 16.968

(1.44)

PSi,t −0.736

(−0.36)

R̄2 0.154 0.164 0.040 0.165 0.005 0.062 0.018 0.002

Obs 4582 4543 4582 4581 4582 4582 4582 4582
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Table 5: Regressions of CP Spreads on Liquidity- and Credit-Related Vari-
ables

This table reports results from nine specifications of regressions of commercial paper (CP)
spreads on liquidity- and credit-related variables. Liquidity variables used include the CP
offer amount (OfferAmti), trading volume (volumei,t), time-to-maturity (Mati,t), the ini-
tial maturity (InitMati), the average trading cost (TCi,t), price impact proxy Amihudi,t.
Credit-related variables used include distance-to-default (DDi,t), credit ratings (Ratingi,t),
the slope of yield curves (Slopet), the equity market index (CSI300t), the option-implied
volatility (CIV IXt), and the slope of its “smirk” (Jumpt). Additional variables used in-
clude the year end dummy (Y earEnd), and the difference between the interest rates on
interbank loans and on short-term government debt (TEDt).

Dependent variable: CP spreads

M1 M2 M3 M4 M5 M6 M7 M8 M9

Intercept 0.005∗ 0.002 −0.003 0.008∗∗ 0.013∗∗∗ −0.000 0.016∗∗∗ 0.001 0.004

(1.66) (0.37) (−0.49) (2.50) (2.77) (−0.11) (2.60) (0.30) (0.45)

OfferAmti −0.156∗∗∗ −0.030

(−6.01) (−0.77)

V olumei,t −0.004 0.018∗∗

(−0.95) (2.56)

Mati,t −0.010 −0.024∗∗∗

(−1.43) (−2.58)

InitMati 0.024∗∗∗ −0.002

(3.11) (−0.38)

TCi,t 2.273∗∗∗ 3.172∗∗∗ 3.284∗∗∗ 3.198∗∗∗ 3.347∗∗∗ 3.359∗∗∗

(2.81) (2.98) (3.03) (2.90) (3.01) (3.06)

Amihudi,t 0.005∗∗∗ 0.006∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(3.06) (2.71) (3.25) (2.92) (2.79)

DDi,t −0.002∗∗∗ −0.001∗∗∗ −0.002∗∗∗ −0.001∗∗ −0.002∗∗∗

(−2.98) (−2.62) (−2.83) (−2.41) (−2.58)

Ratingi,t 0.007∗∗∗ 0.003∗∗ 0.007∗∗∗ 0.003∗ 0.004∗∗

(6.35) (1.99) (5.25) (1.65) (2.39)

Jumpt 0.068∗∗∗ 0.039∗∗∗ 0.049∗∗∗

(3.08) (4.06) (2.79)

Slopet 0.028

(0.10)

CSI300t −0.034∗

(−1.71)

YearEnd 0.008

(0.77)

SCP 0.005

(1.50)

CIV IXt −0.031∗∗

(−2.05)

TEDt 0.176

(0.55)

R̄2 0.007 0.214 0.261 0.270 0.034 0.261 0.041 0.272 0.275

Obs 5755 4543 4543 4543 4543 4543 3853 3853 3853
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Table 6: Spreads on MTNs and EBs on Credit- and Liquidity-Related Variables:
1-3 Years

This table reports results from nine specifications of regressions of 1-3 years MTNs and enterprise
bonds (EBs) spreads on liquidity- and credit-related variables. Liquidity variables used include the
CP offer amount (OfferAmti), trading volume (volumei,t), time-to-maturity (Mati,t), the initial
maturity (InitMati), the average trading cost (TCi,t), price impact proxy Amihudi,t. Credit-
related variables used include distance-to-default (DDi,t), credit ratings (Ratingi,t), the slope of
yield curves (Slopet), the equity market index (CSI300t), the option-implied volatility (CIV IXt),
and the slope of its “smirk” (Jumpt). Additional variables used include the year end dummy
(Y earEnd), and the difference between the interest rates on interbank loans and on short-term
government debt (TEDt).

Dependent variable: Spreads on short-term MTNs and EBs

M1 M2 M3 M4 M5 M6 M7

Intercept 0.015∗∗∗ 0.017∗∗∗ 0.015∗∗∗ 0.013∗∗∗ 0.017∗∗∗ 0.015∗∗∗ 0.015∗∗∗

(7.14) (11.98) (6.84) (7.09) (6.75) (7.81) (3.60)

TCi,t 2.207∗∗∗ 2.323∗∗∗ 1.830∗∗∗ 1.703∗∗∗ 1.704∗∗∗

(3.67) (3.64) (3.49) (3.05) (3.03)

Amihudi,t 0.017∗∗∗ 0.007 0.007 0.007

(2.72) (1.21) (1.26) (1.24)

DDi,t −0.003∗∗∗ −0.002∗∗∗ −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗

(−5.47) (−6.21) (−5.77) (−6.74) (−5.90)

Ratingi,t 0.008∗∗∗ 0.006∗∗∗ 0.008∗∗∗ 0.006∗∗∗ 0.006∗∗∗

(8.07) (7.03) (7.47) (6.51) (6.26)

Jumpt 0.024∗∗∗ 0.022∗∗∗ 0.021∗∗∗

(3.92) (3.97) (3.66)

Slopet 0.217∗

(1.83)

CSI300t −0.006

(−0.79)

YearEnd −0.001

(−0.53)

CIV IXt 0.005

(0.82)

TEDt −0.327

(−1.22)

R̄2 0.240 0.248 0.093 0.278 0.098 0.304 0.304

Obs 2123 2123 2123 2123 1883 1883 1883
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Table 7: Spreads on MTNs and EBs on Credit- and Liquidity-Related Variables:
3-5 Years

This table reports results from nine specifications of regressions of 3-5 years MTNs and enterprise
bonds (EBs) spreads on liquidity- and credit-related variables. Liquidity variables used include
the CP offer amount (OfferAmti), trading volume (volumei,t), time-to-maturity (Mati,t), the
initial maturity (InitMati), the average trading cost (TCi,t), price impact proxy Amihudi,t Credit-
related variables used include distance-to-default (DDi,t), credit ratings (Ratingi,t), the slope of
yield curves (Slopet), the equity market index (CSI300t), the option-implied volatility (CIV IXt),
and the slope of its “smirk” (Jumpt). Additional variables used include the year end dummy
(Y earEnd), and the difference between the interest rates on interbank loans and on short-term
government debt (TEDt).

Dependent variable: Spreads on 3–5 years MTNs and EBs

M1 M2 M3 M4 M5 M6 M7

Intercept 0.019∗∗∗ 0.019∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.011∗∗∗ 0.008∗

(7.56) (7.47) (6.04) (3.21) (5.50) (3.36) (1.87)

TCi,t 1.858∗∗∗ 1.905∗∗∗ 1.219∗∗ 1.369∗∗ 1.355∗∗

(2.91) (3.01) (2.42) (2.41) (2.30)

Amihudi,t −0.002 −0.002 −0.001 −0.001

(−0.78) (−0.87) (−0.67) (−0.71)

DDi,t −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.000∗∗

(−5.43) (−4.53) (−4.65) (−3.74) (−2.26)

Ratingi,t 0.007∗∗∗ 0.006∗∗∗ 0.007∗∗∗ 0.006∗∗∗ 0.006∗∗∗

(7.30) (6.22) (6.71) (6.12) (6.26)

Jumpt 0.011∗ 0.013∗ 0.007

(1.70) (1.85) (1.29)

Slopet 0.150

(1.41)

CSI300t 0.003

(0.48)

YearEnd −0.002

(−1.22)

CIV IXt 0.019∗∗∗

(3.67)

TEDt −0.158

(−1.22)

R̄2 0.239 0.239 0.378 0.427 0.375 0.439 0.463

Obs 1183 1183 1183 1183 999 999 999
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Table 8: Distributions of Observed and Predicted Credit Spreads

This table reports summary statistics of observed and predicted yield spreads for a sample of
commercial papers during May 2014–December 2018. The predicted spreads are generated
from the Black-Cox (1976) model, the double-exponential jump diffusion (DEJD) model,
and the He-Xiong (2012) model with double-exponential jumps (HX-Jumps). N denotes
the number of observations in each rating category. All entries are expressed in percentage
points.

Mean 10% 25% 50% 75% 90% N

all Observed Spread 1.53 0.45 0.80 1.34 1.96 2.88 5478

Black-Cox Spread 0.32 0.00 0.00 0.00 0.03 0.96

DEJD Spread 1.07 0.06 0.20 0.48 1.08 2.62

HX-Jumps Spread 1.62 0.27 0.46 0.85 1.62 3.43

AAA Observed Spread 0.99 0.32 0.53 0.92 1.34 1.71 2405

Black-Cox Spread 0.22 0.00 0.00 0.00 0.02 0.70

DEJD Spread 0.71 0.05 0.19 0.39 0.71 1.55

HX-Jumps Spread 1.02 0.21 0.36 0.62 1.11 2.11

AA+ Observed Spread 1.55 0.62 1.04 1.45 1.90 2.51 1344

Black-Cox Spread 0.31 0.00 0.00 0.00 0.02 0.90

DEJD Spread 1.06 0.06 0.20 0.52 1.12 2.71

HX-Jumps Spread 1.59 0.31 0.51 0.93 1.67 3.93

AA+ Observed Spread 2.11 0.94 1.35 1.94 2.69 3.50 1383

Black-Cox Spread 0.48 0.00 0.00 0.00 0.13 1.68

DEJD Spread 1.44 0.05 0.23 0.72 1.65 3.71

HX-Jumps Spread 2.68 0.40 0.77 1.40 2.56 5.32

Other Observed Spread 2.76 1.34 1.92 2.68 3.63 4.18 346

Black-Cox Spread 0.39 0.00 0.00 0.00 0.03 0.97

DEJD Spread 1.98 0.09 0.25 0.71 1.84 4.57

HX-Jumps Spread 2.65 0.47 0.76 1.29 2.36 5.03
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Table 9: Pricing Errors of Structural Models

This table reports means of pricing errors and percentage errors of structural
models for a sample of commercial papers during May 2014–December 2018.
Pricing errors are reported as the difference in percentage between predicted
and observed yield spreads, and percentage pricing errors the difference be-
tween predicted and observed yield spreads divided by the observed spread.
The predicted spreads are generated from the Black-Cox (1976) model, the
double-exponential jump diffusion (DEJD) model, and the He-Xiong (2012)
model with double-exponential jumps (HX-Jumps). p-values are computed
from the t-test (in parentheses) and Wilcoxon signed-rank test (in braces),
respectively.

all AAA AA+ AA Other

Panel A: Mean pricing error (%)

Black-Cox −1.09 −0.72 −1.17 −1.30 −2.11

[0.000] [0.000] [0.000] [0.000] [0.000]

{0.000} {0.000} {0.000} {0.000} {0.000}
DEJD −0.70 −0.41 −0.75 −0.92 −1.42

[0.000] [0.084] [0.139] [0.000] [0.000]

{0.000} {0.000} {0.000} {0.000} {0.000}
HX-Jumps −0.30 −0.17 −0.38 −0.35 −0.84

[0.161] [0.531] [0.594] [0.000] [0.000]

{0.000} {0.000} {0.000} {0.000} {0.000}

Panel B: Mean percentage error (%)

Black-Cox −66.87 −72.31 −75.04 −56.00 −48.46

[0.000] [0.000] [0.000] [0.000] [0.001]

{0.000} {0.000} {0.000} {0.000} {0.000}
DEJD −20.63 −17.46 −31.12 −8.55 −46.15

[0.158] [0.466] [0.317] [0.756] [0.000]

{0.000} {0.000} {0.000} {0.000} {0.000}
HX-Jumps 10.31 19.88 10.84 −2.60 −18.85

[0.556] [0.507] [0.801] [0.454] [0.004]

{0.023} {0.000} {0.015} {0.000} {0.000}

N 5478 2405 1344 1383 346
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Figure 1: Term Structure of Average Commercial Paper Yield Spreads

This figure plots the par value weighted average yield spread of commercial papers
against maturity over the period from May 2014 to December 2018. Yield spreads
are calculated as the annualized continuously compounded money market yield less
the zero yield of comparable maturity as implied from general collateral repurchase
agreements and interest rate swaps.
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