Speaker: Andrew Schaefer, Rice University

Date: Friday, December 4, 2015

Time: 2:00 – 3:00 PM

Location: VMH 2505

How to Value a Prearranged Paired Kidney Exchange? A Stochastic Game Approach

Author: Andrew J. Schaefer

Abstract:
End-stage renal disease (ESRD) is the ninth-leading cause of death in the U.S. Transplantation is the preferred therapy for ESRD patients, but there is a severe shortage of kidneys for transplantation. This shortage is exacerbated by incompatibilities in blood type and antigen matching among patient-donor pairs. Paired kidney exchange (PKE), a cross-exchange of kidneys among incompatible patient-donor pairs, overcomes many difficulties in matching patients with incompatible donors. PKEs have grown rapidly over the last two decades. The question of how to form PKEs among compatible patient/donor pairs has previously been formulated as a maximum cardinality matching, so that every potential match has the same value.

We seek a more accurate method of valuing a prospective exchange with an arbitrary number of patients. First, we propose that the value of an exchange be the total quality-adjusted survival of the patients. Second, we consider the stochastic evolution of end-stage renal disease. Finally, we introduce patient autonomy by allowing patients to choose when they are willing to undergo the exchange. As all transplantations occur simultaneously, the resulting model is an infinite-horizon non-zero-sum

Bio:
Andrew Schaefer is Noah Harding Chair and Professor of Computational and Applied Mathematics at Rice University. Previously he was Swanson Chair at the University of Pittsburgh. He received his PhD in Industrial and Systems Engineering from Georgia Tech in
2000. His research interests include stochastic optimization methodology and its application to health care problems. In particular, he is interested in optimizing decisions arising in the treatment of a variety of diseases, including end-stage liver disease, HIV/AIDS and influenza. He is a member of two national advisory committees related to organ transplantation.