Disaster Response Planning and Logistics
A Unique Challenge
Most don’t realize the number of national disasters each year and the full requirements of a response.

What is the timeframe that drive the response timeline?

What impact does policy have?

To what extent should survivors be considered self sufficient?
Examining a framework for looking at Disaster Surge Requirements

- **Multiplicity**: Maintaining the capability to respond to multiple disasters regardless of their severity
- **Density**: Scaling responses to account for variances in populations and infrastructure impacted by the disaster
- **Intensity**: Adapting responses to provide adequate support to disasters of varying intensities
The objective of supply chain disaster response is theoretically simple…but operationally and organizationally complex.

- Transportation with damaged infrastructure and constrained fuel
- Supplier Capacity if number of functioning suppliers is reduced
- Survival Needs coupled with a hoarding mentality
- Inventory Planning Safety Stock for multiple sequential or simultaneous disasters
- Distribution with law enforcement restrictions and constraints due to damage or looting
- Uncertain disaster density, intensity, and multiplicity

These challenges defy blanket application private sector best practice and defy translation of requirements and complexities into a traditional model.
Intense public scrutiny only intensifies the pressure

“Tons of Food Spoiled As FEMA Ran Out Of Storage Space”
(Washington Post, 4/12/07)

“Food stored by FEMA spoils”
(United Press International, 4/13/07)

FEMA Wastes $40 Million in Food for Katrina”
(CBS News, 4/13/07)

“Pre-Prepared Meals Wasted”
(CNN: American Morning, 4/26/07)

FEMA Ice Goes To Waste”
(WVUE-TV-New Orleans 7/4/07)

“FEMA Dumps Ice In Storage”
(FOX Report, 7/4/07)

“Doesn’t FEMA Know There Are Starving Children? $40 million in Food Thrown Away”
(Associated Content, 4/13/07)

“Stockpiled Food Goes Bad”
(CNN: The Situation Room, 4/13/07)

“FEMA let millions of meals rot on Gulf Coast”
(Washington Post, 4/13/07)

“Another FEMA goof”
(Bradenton Herald, 4/26/07)

FEMA To Melt $24 Million In Unused
(Congressional Quarterly 7/16/07)
No matter the preparation, there will always be the unknown and unexpected
Applying analytics to the landscape of disaster response

<table>
<thead>
<tr>
<th>Degree of Complexity</th>
<th>Competitive Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastic Optimization</td>
<td>How can we achieve the best outcome including the effects of variability?</td>
</tr>
<tr>
<td>Optimization</td>
<td>How can we achieve the best outcome?</td>
</tr>
<tr>
<td>Predictive modeling</td>
<td>What will happen next if?</td>
</tr>
<tr>
<td>Forecasting</td>
<td>What if these trends continue?</td>
</tr>
<tr>
<td>Simulation</td>
<td>What could happen.... ?</td>
</tr>
<tr>
<td>Alerts</td>
<td>What actions are needed?</td>
</tr>
<tr>
<td>Query/drill down</td>
<td>What exactly is the problem?</td>
</tr>
<tr>
<td>Ad hoc reporting</td>
<td>How many, how often, where?</td>
</tr>
<tr>
<td>Standard Reporting</td>
<td>What happened?</td>
</tr>
</tbody>
</table>

Based on: Competing on Analytics, Davenport and Harris, 2007

Prescriptive

Predictive

Descriptive
Disaster Supply Chain Response Simulation
Defining a model to address the supply chain challenge

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribute emergency supplies such as water, meal, blankets, generators and tarps to disaster victims in the event of various natural and man-made disasters in a timely and effective manner to save and sustain lives, minimize suffering, and protect property.</td>
<td>• Assess the effectiveness of disaster response plan for distributing emergency supplies to disaster victims. • Evaluate the impact of transformation/improvement initiatives. • Identify bottlenecks, risks and improvement opportunities. • Provide decision support for developing an effective disaster response plan.</td>
</tr>
</tbody>
</table>

Technical Solution

Agent-based simulation
- Simulate the flow of emergency supplies and optimize the selection of shipment destinations and cross-shipping between distribution points.

Large-scale logistics optimization algorithms
- Optimized cargo or personnel movements to maximize time-definite delivery at lowest overall logistics costs.

Web-enabled dashboard
- Geographic information system (GIS) for capturing, managing, analyzing, and displaying geographically referenced information.
New Madrid Scenario
Intra-plate earthquake in the southern and mid-western United States

- Earthquake occurs at 2:00 AM on February 7th
- Event represents rupture of three New Madrid Fault segments simultaneously with magnitude, $M_w = 7.7$
- Modeled as sequential rupture of individual segments similar to 1811-1812 series of events over several months
- Severe shaking occurs throughout western Kentucky, Tennessee, southeastern Missouri, northeastern Arkansas and southern Illinois with localized amplification of ground shaking due to variations in soil conditions
- Significant ground deformations likely in soft soils, particularly near riverbeds
- Aftershocks around magnitude 6, $\sim M_w 6$, are likely in the days and weeks after the main shock

<table>
<thead>
<tr>
<th>FEMA Region</th>
<th>State</th>
<th>Commodities (First 72 hours)</th>
<th>Water</th>
<th>MREs</th>
<th>Ice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Liters</td>
<td>Truckloads</td>
<td>Number</td>
<td>Truckloads</td>
</tr>
<tr>
<td>Region IV</td>
<td>Alabama</td>
<td>1,823,169</td>
<td>102</td>
<td>1,215,446</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Kentucky</td>
<td>2,641,557</td>
<td>147</td>
<td>1,761,038</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Mississippi</td>
<td>2,225,166</td>
<td>124</td>
<td>1,483,444</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Tennessee</td>
<td>6,765,444</td>
<td>376</td>
<td>4,510,296</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>Total RIV</td>
<td>13,455,336</td>
<td>749</td>
<td>8,970,224</td>
<td>412</td>
</tr>
<tr>
<td>Region V</td>
<td>Illinois</td>
<td>2,044,269</td>
<td>114</td>
<td>1,362,846</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Indiana</td>
<td>1,755,087</td>
<td>98</td>
<td>1,170,058</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Total RV</td>
<td>3,799,356</td>
<td>212</td>
<td>2,532,904</td>
<td>117</td>
</tr>
<tr>
<td>Region VI</td>
<td>Arkansas</td>
<td>3,045,516</td>
<td>169</td>
<td>2,030,344</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Total RVI</td>
<td>3,045,516</td>
<td>169</td>
<td>2,030,344</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Missouri</td>
<td>2,706,450</td>
<td>150</td>
<td>1,804,300</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Total RVII</td>
<td>2,706,450</td>
<td>150</td>
<td>1,804,300</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>23,006,658</td>
<td>1,280</td>
<td>15,337,772</td>
<td>705</td>
</tr>
</tbody>
</table>

Region VII	Arkansas	3,045,516	169	2,030,344	93	8,121,376	203
	Total RVI	3,045,516	169	2,030,344	93	8,121,376	203
	Missouri	2,706,450	150	1,804,300	83	7,217,200	180
	Total RVII	2,706,450	150	1,804,300	83	7,217,200	180
	Total	23,006,658	1,280	15,337,772	705	61,351,088	1,533

<table>
<thead>
<tr>
<th>Impact County (IC)</th>
<th>Water</th>
<th>MREs</th>
<th>Ice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liters</td>
<td>Truckloads</td>
<td>Number</td>
</tr>
<tr>
<td>Alabama</td>
<td>1,646,337</td>
<td>92</td>
<td>1,097,558</td>
</tr>
<tr>
<td>Arkansas</td>
<td>1,304,613</td>
<td>68</td>
<td>869,742</td>
</tr>
<tr>
<td>Illinois</td>
<td>521,913</td>
<td>27</td>
<td>347,942</td>
</tr>
<tr>
<td>Indiana</td>
<td>1,073,664</td>
<td>92</td>
<td>715,776</td>
</tr>
<tr>
<td>Kentucky</td>
<td>1,162,497</td>
<td>65</td>
<td>774,998</td>
</tr>
<tr>
<td>Missouri*</td>
<td>2,227,620</td>
<td>119</td>
<td>1,485,080</td>
</tr>
<tr>
<td>Tennessee</td>
<td>4,713,111</td>
<td>262</td>
<td>3,142,074</td>
</tr>
<tr>
<td>Total IC</td>
<td>12,649,753</td>
<td>723</td>
<td>8,433,170</td>
</tr>
</tbody>
</table>

Modeling Challenges for Disaster Response

Goals
- Best possible coverage
- Allocation/Adjudication
- Transportation planning and scheduling
- Sensitivity analysis

Challenging Factors
- Non-stationary demands and unstable supply chains
- Uncertain/unknown demands and capacities
- Multiple sourcing from dynamic supply points
- Joint sourcing and transportation decisions with disruptions
- Adjudication/Allocation for fairly balancing coverage
New Madrid Scenario
Coverage simulation: Sample Snapshot
Key Takeaways

- There is no perfect solution
 - Mitigation of damage – the magnitude and timing of the disaster prevents perfect coverage
 - Application of sophisticated analytic techniques could help drive coverage improvements of up to 9.6% leading to an estimated 57.1% coverage for the given scenario constraints.
 - Seemingly modest improvement would still result in an additional 1.5M days of water rations with improved distribution

- Location flexibility and additional scalability of potential distribution of staging areas can drive substantial improvements

- Scalability of supply capacity becomes both a critical success factor and challenge
Mobile adoption continues to explode

41% Compound Annual Growth Rate (CAGR)

Wearable Wireless Devices

1 Trillion Connected Sensors

5.6 Billion Personal Devices Sold

2013 2014 2015

The onset of social and mobile presents a wide range of new opportunities

- Mobile represents a shift from a hardened infrastructure to one more individual and flexible
 - Provides an avenue to push and receive real time information immediately
 - Can be used to identify and locate victims in need

- Hurricane Sandy showed the power utilizing mobile and social media to generate and transmit data
 - Agencies pushed information through twitter and Facebook and manage information
 - FEMA and the Red Cross mined tweets and posts for actionable information that were out to response teams
 - Disaster reporter apps receive structured disaster reports
Applying analytics to growing amounts of unstructured data to glean insights?

- How much do we leave untapped if we don’t go after the unstructured data?
- What innovative applications can we apply to drive more effective disaster response?
- What are the challenges that come with the data?
Thank you!

- Leanne Viera, IBM Partner, viera@us.ibm.com
- Sung Seo, IBM Senior Managing Consultant, sungseo@us.ibm.com